Numerous electrode geometries and power supplies, both commercial and in-house, have been employed for the generation of low-temperature atmospheric plasma jets. In this work, the development and operation of a 12 jet nonthermal atmospheric plasma system is presented. The study is based on optical spectroscopy as a diagnostic method due to its nonintrusive nature. A key focus of this study was the material selection (conductive and nonconductive), with several polymers screened for the jet design leading to polyacetal as the choice material. Their results are compared with other atmospheric plasma jet systems. The results show a significant increase in residence time and the spatial homogeneity for ambient air's main species, including: OH, O I, O2, O3, N2, and N2+. Their densities are studied with respect to treatment time, distance, duty cycle, and discharge frequency, as well as the jets' carrier gas chemistries (argon and helium). For their plasma jet system, the bulk of the chemical reactions occur in the surrounding atmosphere and not in the jet nozzle, which is different from most other plasma jet systems. The electron energy distribution function, for the given chemistries, is also reported.

1.
K.
Inomata
,
N.
Aoki
, and
H.
Koinuma
,
Jpn. J. Appl. Phys., Part 2
33
,
L197
(
1994
).
2.
J.
Park
,
I.
Henins
,
H. W.
Herrmann
,
G. S.
Selwyn
,
J. Y.
Jeong
,
R. F.
Hicks
,
D.
Shim
, and
C. S.
Chang
,
Appl. Phys. Lett.
76
,
288
(
2000
).
3.
H. M.
Abourayana
,
V.
Milosavljević
,
P.
Dobbyn
,
P. J.
Cullen
, and
D. P.
Dowling
,
Surf. Coat. Tech.
308
,
435
(
2016
).
4.
H.
Hirai
,
R.
Sasaki
,
T.
Takamatsu
,
M.
Shibata
,
M.
Ichikawa
,
H.
Miyahara
, and
A.
Okino
,
Proceedings of the 63rd 45 Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas
(
2010
), p.
38
.
5.
X.
Lu
,
M.
Laroussi
, and
V.
Puech
,
Plasma Sources Sci. Technol.
21
,
034005
(
2012
).
6.
Z.
Cao
,
Q.
Nie
,
D. L.
Bayliss
,
J. L.
Walsh
,
C. S.
Ren
,
D. Z.
Wang
, and
M. G.
Kong
,
Plasma Sources Sci. Technol.
19
,
025003
(
2010
).
7.
N.
O'Connor
,
H.
Humphreys
, and
S.
Daniels
,
IEEE Trans. Plasma Sci.
42
,
756
(
2014
).
8.
J. L.
Walsh
and
M. G.
Kong
,
Appl. Phys. Lett.
93
,
111501
(
2008
).
9.
H.
Koinuma
,
H.
Ohkubo
,
T.
Hashimoto
,
K.
Inomata
,
T.
Shiraishi
,
A.
Miyanaga
, and
S.
Hayashi
,
Appl. Phys. Lett.
60
,
816
(
1992
).
10.
I. E.
Kieft
,
E. P. v d.
Laan
, and
E.
Stoffels
,
New J. Phys.
6
,
149
(
2004
).
11.
M.
Teschke
,
J.
Kedzierski
,
E. G.
Finantu-Dinu
,
D.
Korzec
, and
J.
Engemann
,
IEEE Trans. Plasma Sci.
33
,
310
(
2005
).
12.
X.
Lu
,
Z.
Jiang
,
Q.
Xiong
,
Z.
Tang
, and
Y.
Pan
,
Appl. Phys. Lett.
92
,
151504
(
2008
).
13.
X.
Lu
,
G. V.
Naidis
,
M.
Laroussi
,
S.
Reuter
,
D. B.
Graves
, and
K.
Ostrikov
,
Phys. Rep.
630
,
1
(
2016
).
14.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O'Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
015003
(
2013
).
15.
K.
Takeda
,
T.
Kumakura
,
K.
Ishikawa
,
H.
Tanaka
,
M.
Sekine
, and
M.
Hori
,
Appl. Phys. Express
10
,
36201
(
2017
).
16.
J.-S.
Oh
,
O. T.
Olabanji
,
C.
Hale
,
R.
Mariani
,
K.
Kontis
, and
J. W.
Bradley
,
J. Phys. D: Appl. Phys.
44
,
155206
(
2011
).
17.
N.
Jiang
,
J. L.
Yang
,
F.
He
, and
Z. X.
Cao
,
J. Appl. Phys.
109
,
093305
(
2011
).
18.
M.
Ghasemi
,
P.
Olszewski
,
J. W.
Bradley
, and
J. L.
Walsh
,
J. Phys. D: Appl. Phys.
46
,
52001
(
2013
).
19.
X. J.
Shao
,
Z. S.
Chang
,
H. B.
Mu
,
W.-L.
Liao
, and
G.-J.
Zhang
,
IEEE Trans. Plasma Sci.
41
,
899
(
2013
).
20.
E.
Karakas
,
M.
Koklu
, and
M.
Laroussi
,
J. Phys. D: Appl. Phys.
43
,
155202
(
2010
).
21.
T.
Darny
,
E.
Robert
,
D.
Ries
,
S.
Dozias
, and
J. M.
Pouvesle
,
IEEE Trans. Plasma Sci.
42
,
2504
(
2014
).
22.
Y. B.
Xian
,
M. H.
Qaisrani
,
Y. F.
Yue
, and
X. P.
Lu
,
Phys. Plasmas
23
,
103509
(
2016
).
23.
F.
Iza
,
G. J.
Kim
,
S. M.
Lee
,
J. K.
Lee
,
J. L.
Walsh
,
Y. T.
Zhang
, and
M. G.
Kong
,
Plasma Processes Polym.
5
,
322
(
2008
).
24.
G. Y.
Park
,
S. J.
Park
,
M. Y.
Choi
,
I. G.
Koo
,
J. H.
Byun
,
J. W.
Hong
,
J. Y.
Sim
,
G. J.
Collins
, and
J. K.
Lee
,
Plasma Sources Sci. Technol.
21
,
043001
(
2012
).
25.
J.
Ehlbeck
,
U.
Schnabel
,
M.
Polak
,
J.
Winter
,
T.
von Woedtke
,
R.
Brandenburg
,
T.
Von
,
D.
Hagen
, and
K.-D.
Weltmann
,
J. Phys. D: Appl. Phys.
44
,
13002
(
2011
).
26.
V.
Milosavljević
and
P. J.
Cullen
,
Eur. Phys. J. Appl. Phys.
80
,
20801
(
2017
).
27.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, “
NIST atomic spectra database (version 5.5.1)
,”
2018
, https://physics.nist.gov/asd.
28.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Van Nostrand
,
New York
,
1963
), Vol.
1
.
29.
P. J.
Cullen
and
V.
Milosavljević
,
Prog. Theor. Exp. Phys.
2015
,
063J01
(
2015
).
30.
P. J.
Cullen
,
J.
Lalor
,
L.
Scally
,
D.
Boehm
,
V.
Milosavljević
,
P.
Bourke
, and
K.
Keener
,
Plasma Processes Polym.
2017
,
e1700085
.
31.
C. E.
Nwankire
,
V. J.
Law
,
A.
Nindrayog
,
B.
Twomey
,
K.
Niemi
,
V.
Milosavljević
,
W. G.
Graham
, and
D. P.
Dowling
,
Plasma Chem. Plasma Process.
30
,
537
(
2010
).
32.
M.
Donegan
,
V.
Milosavljević
, and
D. P.
Dowling
,
Plasma Chem. Plasma Process.
33
,
941
(
2013
).
33.
L.
Scally
,
J.
Lalor
,
P. J.
Cullen
, and
V.
Milosavljević
,
J. Vac. Sci. Technol., A
35
,
03E105
(
2017
).
34.
V.
Milosavljević
,
M.
Donegan
,
P. J.
Cullen
, and
D. P.
Dowling
,
J. Phys. Soc. Jpn.
83
,
014501
(
2014
).
You do not currently have access to this content.