A plasma technology approach to grow microcrystalline GaP/Si superlattices was explored. The layers of GaP were grown using time modulated plasma enhanced deposition (atomic layer deposition approach), while Si layers were grown using the conventional plasma enhanced chemical vapor deposition mode with high hydrogen dilution. The (3 nm)GaP/(2 nm)Si superlattices were formed on Si and GaP substrates either by the growth of an amorphous GaP/Si multilayer structure followed by thermal annealing at 450–900 °C or by growth of a microcrystalline GaP/Si superlattice at temperatures not exceeding 400 °C. A quantum confinement effect of thin 2 nm Si layers was demonstrated by the appearance of a peak at 500 cm−1 in Raman spectra. The crucial role of hydrogen behavior in Si crystallization and void formation during the annealing of amorphous and growth of microcrystalline GaP/Si structures was demonstrated.

1.
H.
Kawanami
,
Sol. Energy Mater. Sol. Cells
66
,
479
(
2001
).
2.
A. S.
Brown
and
M. A.
Green
,
Physica E
14
,
96
(
2002
).
3.
P. J.
Lin-Chung
,
Proceedings Material Research Society Symposia
(
1991
), Vol.
220
, p.
589
.
4.
D.
Kovalev
,
H.
Heckler
,
G.
Polisski
, and
F.
Koch
,
Phys. Status Solidi B
215
,
871
(
1999
).
5.
M.
Modreanua
,
M.
Gartner
,
E.
Aperathitis
,
N.
Tomozeiu
,
M.
Androulidaki
,
D.
Cristea
, and
P.
Hurley
,
Physica E
16
,
461
(
2003
).
6.
R.
Varache
,
M.
Darnon
,
M.
Descazeaux
,
M.
Martin
,
T.
Baron
, and
D.
Muñoz
,
Energy Procedia
77
,
493
(
2015
).
7.
A. S.
Gudovskikh
,
I. A.
Morozov
,
A. V.
Uvarov
,
D. A.
Kudryashov
,
E. V.
Nikitina
,
A. S.
Bukatin
,
V. N.
Nevedomskiy
, and
J.-P.
Kleider
,
J. Vac. Sci. Technol., A
36
,
021302
(
2018
).
8.
M.
Wihl
,
M.
Cardona
, and
J.
Tauc
,
J. Non-Cryst. Solids
8–10
,
172
(
1972
).
9.
S.
Hayashi
,
Solid State Commun.
56
,
375
(
1985
).
10.
A.
Bondi
 et al,
Thin Solid Films
541
,
72
(
2013
).
11.
D.
Pastor
,
J.
Olea
,
M.
Toledano-Luque
,
I.
Mártil
,
G.
González-Díaz
,
J.
Ibáñez
,
R.
Cuscó
, and
L.
Artús
,
J. Appl. Phys.
106
,
053510
(
2009
).
12.
C.
Smit
,
R. A. C. M. M.
van Swaaij
,
H.
Donker
,
A. M. H. N.
Petit
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
J. Appl. Phys.
94
,
3582
(
2003
).
13.
J. H.
Parker
, Jr.
,
D. W.
Feldman
, and
M.
Ashkin
,
Phys. Rev.
155
,
712
(
1967
).
14.
P.
Roca i Cabarrocas
,
J. Non-Cryst. Solids
266
,
31
(
2000
).
15.
H.
Fujiwara
,
M.
Kondo
, and
A.
Matsuda
,
Phys. Rev. B
63
,
115306
(
2001
).
16.
R.
Cariou
,
M.
Labrune
, and
P.
Roca i Cabarrocas
,
Sol. Energy Mater. Sol. Cells
95
,
2260
(
2011
).
17.
Y.
Duan
,
J. F.
Kong
, and
W. Z.
Shen
,
J. Raman Spectrosc.
43
,
756
(
2011
).
18.
D. M.
Sagar
,
J. M.
Atkin
,
P. K. B.
Palomaki
,
N. R.
Neale
,
J. L.
Blackburn
,
J. C.
Johnson
,
A. J.
Nozik
,
M. B.
Raschke
, and
M. C.
Beard
,
Nano Lett.
15
,
1511
(
2015
).
19.
C. M.
Hessel
,
J.
Wei
,
D.
Reid
,
H.
Fijii
,
M. C.
Downer
, and
B. A.
Korgel
,
J. Phys. Chem. Lett.
3
,
1089
(
2012
).
20.
H.
Xia
 et al,
J. Appl. Phys.
78
,
6705
(
1995
).
21.
Z.
Iqbal
and
S.
Veprek
,
J. Phys. C
15
,
377
(
1982
).
22.
M.
Ehbrecht
,
B.
Kohn
, and
F.
Huisken
,
Phys. Rev. B
56
,
6958
(
1997
).
23.
Y.
Gao
,
X.
Zhao
,
P.
Yin
, and
F.
Gao
,
Sci. Rep.
6
,
20539
(
2016
).
24.
A. S.
Gudovskikh
,
J. P.
Kleider
,
V. P.
Afanasjev
,
A. Z.
Kazak-Kazakevich
, and
A. P.
Sazanov
,
J. Non-Cryst. Solids
338–340
,
135
(
2004
).
25.
A.
Hara
,
Jpn. J. Appl. Phys., Part 1
46
,
962
(
2007
).
26.
S. J.
Pearton
,
J. W.
Corbett
, and
J. T.
Borenstein
,
Physica B
170
,
85
(
1991
).
27.

TEM was measured at Federal Joint Research Center “Materials Science and Diagnostics in Advanced Technologies” of A.F. Ioffe Physical-Technical Institute.

You do not currently have access to this content.