A plasma enhanced atomic layer deposition process for synthesizing titanium dioxide (TiO2) films, which allows the film properties to be modified by tuning the ion energies of the discharges, was performed. The films were deposited via the oxidation of titanium tetrachloride in a typical capacitively coupled radio frequency (CCRF) discharge in argon/oxygen mixtures at a low temperature of 100 °C, resulting in all the films synthesized being amorphous. The energy distributions of ions hitting on the lower electrode (wafer surface) in the CCRF discharges were varied by tuning the impedance of the lower electrode, aimed at controlling the film properties. The wet etching rate of TiO2 films shows a clear correlation with the mean ion energy, εi, i.e., a higher εi realizes a higher value of the wet etching rate. The variation of the film properties is explained by a change in the balance between the ion bombardment and the oxidation; the former is greatly affected by εi, whereas the latter is mainly determined by radio frequency (RF) power. In a high εi condition, the bombardment of high energetic ions is pronounced, resulting in the formation of fine pores in the films, which was confirmed by physical analyses such as positron annihilation spectroscopy. In this study, the dependence of CCRF discharges as well as the film properties on RF power is also discussed.

1.
H.
Profijt
,
S.
Potts
,
M.
van de Sanden
, and
W.
Kessels
,
J. Vac. Sci. Technol., A
29
,
050801
(
2011
).
2.
V.
Miikkulainen
,
M.
Leskel
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
3.
A.
Kobayashi
,
N.
Tsuji
,
A.
Fukazawa
, and
N.
Kobayashi
,
Thin Solid Films
520
,
3994
(
2012
).
4.
C. S.
Hwang
,
Atomic Layer Deposition for Semiconductors
(
Springer
,
New York
,
2014
).
5.
T.
Takagi
,
J. Vac. Sci. Technol., A
2
,
382
(
1984
).
6.
S. M.
Han
and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
14
,
2062
(
1996
).
7.
E.
Johnson
,
T.
Verbeke
,
J.
Vanel
, and
J.
Booth
,
J. Phys. D: Appl. Phys.
43
,
412001
(
2010
).
8.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
9.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
42
,
092005
(
2009
).
10.
E.
Schüngel
,
Q.
Zhang
,
S.
Iwashita
,
J.
Schulze
,
L.
Hou
,
Y.
Wang
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
44
,
285205
(
2011
).
11.
E.
Schüngel
,
S.
Mohr
,
S.
Iwashita
,
J.
Schulze
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
46
,
175205
(
2013
).
12.
J.
Logan
,
IBM J. Res. Dev.
14
,
172
(
1970
).
13.
J.
Keller
and
W.
Pennebaker
,
IBM J. Res. Dev.
23
,
3
(
1979
).
14.
H.
Profijt
,
M.
van de Sanden
, and
W.
Kessels
,
J. Vac. Sci. Technol., A
31
,
01A106
(
2013
).
15.
H.
Profijt
,
M.
van de Sanden
, and
W.
Kessels
,
Electrochem. Solid-State Lett.
15
,
G1
(
2012
).
16.
Y.
Yamazawa
, “
Plasma processing apparatus having impedance varying electrodes
,” U.S. patent 7611603 (3 November
2009
).
17.
K.
Denpoh
 et al,
Proceedings of the 38th International Symposium on Dry Process
(
2016
), p.
183
.
18.
M.
Funk
,
Proceedings of the 65th Gaseous Electronics Conference
(
2012
), p.
ET4.4
.
19.
H.
Kokura
,
K.
Nakamura
,
L.
Ghanshev
, and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
38
,
5262
(
1999
).
20.
K.
Nakamura
,
M.
Ohata
, and
H.
Sugai
,
J. Vac. Sci. Technol., A
21
,
325
(
2003
).
21.
C.
Scharwitz
,
M.
Böke
,
S.
Hong
, and
J.
Winter
,
Plasma Processes Polym.
4
,
605
(
2007
).
22.
M.
Lapke
,
T.
Mussenbrock
, and
R.
Brinkmann
,
Appl. Phys. Lett.
93
,
051502
(
2008
).
23.
M.
Lieberman
and
A.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2005
).
24.
E.
Edelberg
,
A.
Perry
,
N.
Benjamin
, and
E.
Aydil
,
J. Vac. Sci. Technol., A
17
,
506
(
1999
).
25.
E.
Kawamura
,
V.
Vahedi
,
M.
Lieberma
, and
C.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
26.
T.
Mussenbrock
,
Contrib. Plasma Phys.
52
,
571
(
2012
).
27.
C.
Wild
and
P.
Koidl
,
J. Appl. Phys.
69
,
2909
(
1991
).
28.
Q.
Xie
 et al,
Electrochem. Soc.
155
,
H688
(
2008
).
29.
L.
Aarik
,
T.
Arroval
,
R.
Rammula
,
H.
Mändar
,
V.
Sammelselg
, and
J.
Aarik
,
Thin Solid Films
542
,
100
(
2013
).
30.
S.
Ratzsch
,
E.
Kley
,
A.
Tünnermann
, and
A.
Szeghalmi
,
Materials
8
,
7805
(
2015
).
31.
N.
Kubala
,
P.
Rowlette
, and
C.
Wolden
,
J. Phys. Chem. C
113
,
16307
(
2009
).
32.
A.
Strobe
,
H.
Schnabela
,
U.
Reinhold
,
S.
Rauer
, and
A.
Neidhardt
,
J. Vac. Sci. Technol., A
34
,
01A118
(
2016
).
33.
“WebElements,” https://www.webelements.com/.
34.
W.
Hayward
and
A.
Wolter
,
J. Appl. Phys.
40
,
2911
(
1969
).
35.
R.
Kelly
and
N.
Lam
,
Radiat. Eff.
19
,
39
(
1973
).
36.
Y.
Guo
,
J.
Li
,
A.
Markovits
, and
R.
Zhang
,
Phys. Chem. Chem. Phys.
18
,
10594
(
2016
).
37.
M.
Baklanov
and
K.
Mogilnikov
,
Microelectron. Eng.
64
,
335
(
2002
).
38.
A.
Grill
,
V.
Patel
,
K.
Rodbell
,
E.
Huang
,
M.
Baklanov
,
K.
Mogilnikov
,
M.
Toney
, and
H.
Kim
,
J. Appl. Phys.
94
,
3427
(
2003
).
39.
A.
Uedono
,
Z.
Chen
,
R.
Suzuki
,
T.
Ohdaira
,
T.
Mikado
,
S.
Fukui
,
A.
Shiota
, and
S.
Kimura
,
J. Appl. Phys.
90
,
2498
(
2001
).
40.
A.
Uedono
,
T.
Koida
,
A.
Tsukazaki
,
M.
Kawasaki
,
Z.
Chen
, and
S.
Chichibu
,
J. Appl. Phys.
93
,
2481
(
2003
).
41.
A.
Uedono
,
S.
Armini
,
Y.
Zhang
,
T.
Kitazaki
,
R.
Krause-Rehberg
,
W.
Anwand
, and
A.
Wagner
,
Appl. Surf. Sci.
368
,
272
(
2016
).
42.
S.
Yoshimoto
,
K.
Ito
,
H.
Hosomi
, and
Y.
Takai
,
JJAP Conf. Proc.
2
,
011205
(
2014
).
43.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken, NJ
,
2007
).
44.
S.
Iwashita
,
S.
Aoyama
,
K.
Miyashita
,
M.
Nasu
,
K.
Shimomura
,
N.
Noro
,
T.
Hasegawa
, and
Y.
Akasaka
,
J. Vac. Sci. Technol., A
34
,
01A145
(
2016
).
45.
P.
Sudhagar
,
R.
Sathymoorthy
, and
S.
Chandramohan
,
Appl. Surf. Sci.
254
,
1919
(
2008
).
You do not currently have access to this content.