The influence of deposition temperature on the structural, chemical, and electrical properties of atomic layer deposition (ALD)-Al2O3 thin films is investigated. ALD-Al2O3 films were deposited on p-type Ge substrates at 80, 150, 200, 250, and 300 °C. The atomic force microscopy analysis reveals smooth and cohesive films with extremely low roughness (0.2–0.6) nm at 150, 200, 250, and 300 °C. On the contrary, Al2O3 films deposited at the lowest available deposition temperature (80 °C) exhibit holes and aggregates implying a nonhomogeneous deposition. The x-ray photoelectron spectroscopy (XPS) analysis indicates the presence of stoichiometric Al2O3 films at all deposition temperatures. The calculated thickness from the analysis of XPS spectra seems to be in good agreement with the ALD nominal thickness for the films deposited at all deposition temperatures except the one of 80 °C. Transmission electron microscopy (TEM) analysis reveals a flat interface between Al2O3 and p-Ge in an atomic level. In addition, TEM and XPS analyses indicate the absence of any oxidized interlayer between p-Ge and Al2O3 films. Furthermore, C-V, G-V, C-f, G-f, and J-V measurements were performed in order to study the electrical properties and evaluate the density of interfacial traps (Dit) of the structures prior and following forming gas annealing procedure. Forming gas annealing clearly improves the electrical response of all tested structures, as expected, by reducing significantly the “streching out” effect and the frequency dispersion at the depletion regime. Leakage currents and Dit in the order of 10−4 A/cm2 (for applied voltage 1 V) and 1011 eV−1 cm−2, respectively, were measured-calculated for all tested structures.

1.
G.
Wilk
,
M. R.
Wallace
, and
M. J.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
2.
J.
Robertson
,
Eur. Phys. J. Appl. Phys.
28
,
265
(
2004
).
3.
M. A.
Botzakaki
 et al,
ECS Solid State Lett.
1
,
P32
(
2012
).
4.
M. A.
Botzakaki
,
A.
Kerasidou
,
N.
Xanthopoulos
,
D.
Skarlatos
,
S.
Kennou
,
S.
Ladas
,
S. N.
Georga
, and
Ch. A.
Krontiras
,
Phys. Status Solidi C
10
,
137
(
2012
).
5.
A. P.
Kerasidou
,
M. A.
Botzakaki
,
N.
Xanthopoulos
,
S.
Kennou
,
S.
Ladas
,
S. N.
Georga
, and
A. Ch.
Krontiras
,
J. Vac. Sci. Technol., A
31
,
01A126
(
2013
).
6.
M. A.
Botzakaki
,
N.
Xanthopoulos
,
E.
Makarona
,
C.
Tsamis
,
S.
Kennou
,
S.
Ladas
,
S. N.
Georga
, and
Ch. A.
Krontiras
,
Microelectron. Eng.
112
,
208
(
2013
).
7.
S.
Ramanathan
,
A.
Karthikeyan
,
S. A.
Govindarajan
, and
P. D.
Kirsch
,
J. Vac. Sci. Technol., B
26
,
L33
(
2008
).
8.
M. J.
Rafí
,
M.
Zabala
,
O.
Beldarrain
, and
F.
Campabadal
,
J. Electrochem. Soc.
158
,
G108
(
2011
).
9.
S.
Fadida
,
F.
Palumbo
,
L.
Nyns
,
D.
Lin
,
S.-V.
Elshocht
,
M.
Caymax
, and
M.
Eizenberg
,
J. Vac. Sci. Technol., B.
32
,
03D105
(
2014
).
10.
A.
Delabie
 et al,
J. Appl. Phys.
97
,
064104
(
2005
).
11.
A.
Dimoulas
,
G.
Mavrou
,
G.
Vellianitis
,
E.
Evangelou
,
N.
Boukos
,
M.
Houssa
, and
M.
Caymax
,
Appl. Phys. Lett.
86
,
032908
(
2005
).
12.
R.
Terki
,
H.
Feraoun
,
G.
Bertrand
, and
H.
Aourag
,
Comput. Mater. Sci.
33
,
44
(
2005
).
13.
Z.
Tan
,
L.
Zhao
,
J.
Wang
, and
J.
Xu
,
ECS Solid State Lett.
2
,
P61
(
2013
).
14.
V.
Djara
 et al,
Microelectron. Eng.
109
,
182
(
2013
).
15.
A. R.
Minamisawa
 et al,
Microelectron. Eng.
88
,
2955
(
2011
).
16.
S.
Koveshnikov
,
W.
Tsai
,
I.
Ok
,
J. C.
Lee
,
V.
Torkanov
,
M.
Yakimov
, and
S.
Oktyabrsky
,
Appl. Phys. Lett.
88
,
022106
(
2006
).
17.
R.
Zhang
,
P.-C.
Huang
,
L.
Ju-Chin
,
N.
Taoka
,
M.
Takenaka
, and
Sh.
Takagi
,
IEEE Trans. Electron Devices
60
,
927
(
2013
).
18.
R.
Zhang
,
P. C.
Huang
,
J. C.
Lin
,
M.
Takenaka
, and
Sh.
Takagi
,
ECS Trans.
50
,
699
(
2012
).
19.
A.
Toriumi
,
T.
Tabata
,
C. H.
Lee
,
T.
Nishimura
,
K.
Kita
, and
K.
Nagashio
,
Microelectron. Eng.
86
,
1571
(
2009
).
20.
D.
Wei
,
T.
Hossain
,
Y. N.
Garces
,
N.
Nepal
,
M. H.
Meyer
 III
,
J. M.
Kirkham
,
C. R.
Eddy
, Jr.
, and
H. J.
Edgar
,
ECS J. Solid State Sci. Technol.
2
,
N110
(
2013
).
21.
M. A.
Botzakaki
, “
Growth and characterization of high-k dielectrics on p-Ge MOS devices
,” Ph.D. thesis (
University of Patras, Patras
,
Greece
,
2015
).
22.
B. W.
Chen
,
S. B.
Shie
, and
A.
Chin
,
IEEE Electron Device Lett.
32
,
449
(
2011
).
23.
N.
Wu
 et al,
Appl. Phys. Lett.
84
,
3741
(
2004
).
24.
X.
Wang
,
H.
Liu
,
L.
Zhao
,
C.
Fei
,
X.
Feng
,
S.
Chen
, and
Y.
Wang
,
Nanoscale Res. Lett.
12
(
2017
).
25.
V.
Singh
,
K. S.
Sharma
,
D.
Kumar
, and
K. R.
Nahar
,
Microelectron. Eng.
91
,
137
(
2012
).
26.
D.
Tsoutsou
,
Y.
Panayiotatos
,
S.
Galata
,
A.
Sotiropoulos
,
G.
Mavrou
,
E.
Golias
, and
A.
Dimoulas
,
Microelectron. Eng.
88
,
407
(
2011
).
27.
X.-Q.
Chen
,
Y.-H.
Xiong
,
J.
Du
,
F.
Wei
,
H.-B.
Zhao
,
Q.-Z.
Zhang
,
W.-Q.
Zhang
, and
X.-P.
Liang
, “
Improving interfacial and electrical properties of HfO2/SiO2/p-Si stacks with N2-plasma-treated SiO2 interfacial layer
,”
Rare Met.
(published online).
28.
X.-Y.
Feng
,
H.-X.
Liu
,
X.
Wang
,
L.
Zhao
,
C.-X.
Fei
, and
H.-L.
Liu
,
Nanoscale Res. Lett.
12
(
2017
).
29.
Md.
Shahinur-Rahman
,
E. K.
Evangelou
,
N.
Konofaos
, and
A.
Dimoulas
,
J. Appl. Phys.
112
,
094501
(
2012
).
30.
G.
Mavrou
,
P.
Tsipas
,
A.
Sotiropoulos
,
S.
Galata
,
Y.
Panayiotatos
,
A.
Dimoulas
,
C.
Marchiori
, and
J.
Fompeyrine
,
Appl. Phys. Lett.
93
,
212904
(
2008
).
31.
C. C.
Li
,
K.-S.
Chang-Liao
,
C. H.
Fu
,
T. L.
Hsieh
,
L. T.
Chen
,
Y. L.
Liao
,
C. C.
Lu
, and
T. K.
Wang
,
Microelectron. Eng.
109
,
64
(
2013
).
32.
S.
Takagi
 et al,
Solid State Electron.
88
,
2
(
2013
).
33.
R.
Zhang
,
C. P.
Huang
,
L.
Ju-Chin
,
M.
Takenaka
, and
Sh.
Takagi
,
Appl. Phys. Lett.
102
,
081603
(
2013
).
34.
Sh.
Takagi
,
R.
Zhang
, and
M.
Takenaka
,
Microelectron. Eng.
109
,
389
(
2013
).
35.
P.
Svarnas
,
M. A.
Botzakaki
,
G.
Skoulatakis
,
S.
Kennou
,
S.
Ladas
,
C.
Tsamis
,
S. N.
Georga
, and
C. A.
Krontiras
,
Thin Solid Films
599
,
49
(
2016
).
36.
M. A.
Botzakaki
,
G.
Skoulatakis
,
S.
Kennou
,
S.
Ladas
,
C.
Tsamis
,
S. N.
Georga
, and
C. A.
Krontiras
,
J. Phys. D: Appl. Phys.
49
,
385104
(
2016
).
37.
J.
Koo
,
S.
Kim
,
S.
Jeon
,
H.
Jeon
,
Y.
Kim
, and
Y.
Won
,
J. Korean Phys. Soc.
48
,
131
(
2006
).
38.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
39.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Materials
17
,
236
(
2014
).
40.
F. P.
Carcia
,
S. R.
McLean
,
G. Z.
Li
,
H. M.
Reilly
, and
J. W.
Marshall
,
J. Vac. Sci. Technol., A
30
,
041515
(
2012
).
41.
Y. C.
Yuan
and
A. D.
Dornfeld
, ASME
J. Manuf. Sci. Eng.
132
,
030918
(
2010
).
42.
I.
Horcas
,
R.
Fernandez
,
J. M.
Gomez-Rodriguez
,
J.
Colchero
,
J.
Gomez Herrero
, and
A. M.
Baro
,
Rev. Sci. Instrum.
78
,
013705
(
2007
).
43.
L.
Sygellou
,
V.
Gianneta
,
N.
Xanthopoulos
,
D.
Skarlatos
,
S.
Georga
,
C.
Krontiras
,
S.
Ladas
, and
S.
Kennou
,
Surf. Sci. Spectra
18
,
58
(
2011
).
44.
N.
Taoka
,
K.
Ikeda
,
W.
Mizubayashi
,
Y.
Morita
,
S.
Migita
,
H.
Ota
, and
S.
Tagaki
,
J. Appl. Phys.
110
,
064506
(
2011
).
45.
K.
Martens
 et al,
IEEE Trans. Electron Devices
55
,
547
(
2008
).
46.
Q.
Xie
 et al,
Semicond. Sci. Technol.
27
,
074012
(
2012
).
47.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley-Inter Science
,
New York
,
1982
).
48.
W. A.
Hill
and
C. C.
Coleman
,
Solid State Electron.
23
,
987
(
1973
).
49.
O. C.
Chui
,
H.
Kim
,
D.
Chi
,
C. P.
McIntyre
, and
C.
Saraswat
,
IEEE Trans. Electron Devices
53
,
1509
(
2006
).
50.
V. V.
Afanas'ev
,
Y. G.
Fedorenko
, and
A.
Stesmans
,
Appl. Phys. Lett.
87
,
032107
(
2005
).
51.
R. J.
Weber
,
A.
Janotti
,
P.
Rinke
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
91
,
142101
(
2007
).
52.
X.
Ruilong
,
H.
Wei
,
Y.
Mingbin
, and
Zh.
Chunxiang
,
Appl. Phys. Lett.
93
,
073504
(
2008
).
53.
X.
Garros
,
C.
Leroux
, and
J.-L.
Autran
,
Electrochem. Solid-State Lett.
5
,
F4
(
2002
).
54.
H.
Matsubara
,
T.
Sasada
,
M.
Takenaka
, and
S.
Takagi
,
Appl. Phys. Lett.
93
,
032104
(
2008
).
55.
M. A.
Botzakaki
, “
Atomic layer deposition (ALD) of Αl2O3 thin films on p type Ge: Thickness and temperature dependence of interfacial properties
,” M.Sc thesis (
University of Patras, Patras
,
Greece
,
2011
).
You do not currently have access to this content.