Aluminum sulfide is a promising material for energy storage, photonics, and microelectronics applications. Most of these applications require thin films with a high control over layer thickness and composition making atomic layer deposition an ideal deposition technique. The authors report a plasma enhanced process for aluminum sulfide based on trimethylaluminum and H2S-plasma. The growth characteristics were studied using in situ spectroscopic ellipsometry, indicating linear growth at a rate of 1.2 Å/cycle at 90°C. Self-saturated growth could be achieved in a temperature window ranging from 90 to 350°C. The process relies on combustion reactions during the plasma step, as confirmed by the observation of CS2 using in situ mass spectrometry measurements. Ex situ x-ray photoelectron spectroscopy, x-ray diffraction, and scanning electron microscopy/energy-dispersive x-ray spectroscopy measurements showed that the deposited layers are amorphous and pinhole free.

1.
C.-H.
Lai
,
M.-Y.
Lu
, and
L.-J.
Chen
,
J. Mater. Chem.
22
,
19
(
2012
).
2.
N. P.
Dasgupta
,
X.
Meng
,
J. W.
Elam
, and
A. B. F.
Martinson
,
Acc. Chem. Res.
48
,
341
(
2015
).
3.
R.
Bube
,
Photoelectronic Properties of Semiconductors
(
Cambridge University
,
Cambridge
,
1992
), p.
235
.
4.
W.
Rachmady
,
M.
Radosavljevic
,
G.
Dewey
, and
R. S.
Chau
, U.S. patent 8,344,418 B2 (
1 January
2013
).
5.
D.
Mudusu
,
K. R.
Nandanapalli
,
S. R.
Dugasani
,
R.
Karuppannan
,
G.
Kothakota Ramakrishna Reddy
,
R. G.
Erode Subramanian
, and
S. H.
Park
,
RSC Adv.
7
,
11111
(
2017
).
6.
E.
Hellstrom
and
R.
Huggins
,
Mater. Res. Bull.
14
,
881
(
1979
).
7.
H.
Senoh
,
T.
Takeuchi
,
H.
Kageyama
,
H.
Sakaebe
,
M.
Yao
,
K.
Nakanishi
,
T.
Ohta
,
T.
Sakai
, and
K.
Yasuda
,
J. Power Sources
195
,
8327
(
2010
).
8.
S.
Amaresh
,
K.
Karthikeyan
,
K. J.
Kim
,
Y. G.
Lee
, and
Y. S.
Lee
,
Nanoscale
6
,
6661
(
2014
).
9.
X.
Meng
,
Y.
Cao
,
J. A.
Libera
, and
J. W.
Elam
,
Chem. Mater.
29
,
9043
(
2017
).
10.
L. C.
Olsen
,
R. C.
Bohara
, and
D. L.
Barton
,
Appl. Phys. Lett.
34
,
528
(
1979
).
11.
H.
Döring
,
K.
Hashimoto
,
R.
Baba
, and
A.
Fujishima
,
J. Electrochem. Soc.
138
,
1416
(
1991
).
12.
K.
Nagamani
,
N.
Revathi
,
P.
Prathap
,
Y.
Lingappa
, and
K. T. R.
Reddy
,
Curr. Appl. Phys.
12
,
380
(
2012
).
13.
K.
Nagamani
,
P.
Prathap
,
Y.
Lingappa
,
R.
Miles
, and
K. R.
Reddy
,
Phys. Procedia
25
,
137
(
2012
).
14.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
15.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
16.
V.
Miikkulainen
,
M.
Leskela
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
17.
S.
Sinha
,
N.
Mahuli
, and
S. K.
Sarkar
,
J. Vac. Sci. Technol., A
33
,
01A139
(
2015
).
18.
T.
Suntola
and
J.
Antson
, U.S. patent 4,058,430 (15 November
1977
).
19.
J.
Bakke
,
J.
King
,
H.
Jung
,
R.
Sinclair
, and
S.
Bent
,
Thin Solid Films
518
,
5400
(
2010
).
20.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
29
,
050801
(
2011
).
21.
H.
Kim
and
I.-K.
Oh
,
Jpn. J. Appl. Phys.
53
,
03DA01
(
2014
).
22.
Y.
Jang
,
S.
Yeo
,
H.-B.-R.
Lee
,
H.
Kim
, and
S.-H.
Kim
,
Appl. Surf. Sci.
365
,
160
(
2016
).
23.
J.
Kuhs
,
T.
Dobbelaere
,
Z.
Hens
, and
C.
Detavernier
,
J. Vac. Sci. Technol., A
35
,
01B111
(
2017
).
24.
N. P.
Dasgupta
,
J. F.
Mack
,
M. C.
Langston
,
A.
Bousetta
, and
F. B.
Prinz
,
Rev. Sci. Instrum.
81
,
044102
(
2010
).
25.
C. D.
Wagner
,
W. M.
Riggs
,
L. E.
Davis
, and
J. F.
Moulder
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perkim-Elmer Corporation
,
Eden Prairie, MN
,
1979
), p.
192
.
26.
X.
Meng
,
J. A.
Libera
,
T. T.
Fister
,
H.
Zhou
,
J. K.
Hedlund
,
P.
Fenter
, and
J. W.
Elam
,
Chem. Mater.
26
,
1029
(
2014
).
27.
S. B. S.
Heil
,
P.
Kudlacek
,
E.
Langereis
,
R.
Engeln
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
131505
(
2006
).
28.
S. B. S.
Heil
,
J. L.
van Hemmen
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
103
,
103302
(
2008
).
29.
E.
Langereis
,
J.
Keijmel
,
W. M. M.
Kessels
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
92
,
231904
(
2008
).
30.
R.
Dixon
,
G.
Duxbury
,
M.
Horani
, and
J.
Rostas
,
Mol. Phys.
22
,
977
(
1971
).
31.
M.
Toyoda
,
T.
Ogawa
, and
N.
Ishibashi
,
Bull. Chem. Soc. Jpn.
47
,
95
(
1974
).
32.
R.
Frerichs
,
Z. Phys.
80
,
150
(
1933
).
33.
O.
Zatsarinny
and
K.
Bartschat
,
J. Phys. B: At. Mol. Opt. Phys.
39
,
2861
(
2006
).
34.
K. W.
Meißner
,
O.
Bartelt
, and
L.
Eckstein
,
Z. Phys.
86
,
54
(
1933
).
35.
B.
Timmermans
,
N.
Vaeck
,
A.
Hubin
, and
F.
Reniers
,
Surf. Interface Anal.
34
,
356
(
2002
).
36.
N. M.
Johnson
,
J.
Walker
,
C. M.
Doland
,
K.
Winer
, and
R. A.
Street
,
Appl. Phys. Lett.
54
,
1872
(
1989
).
37.
H.
Goto
,
K.
Shibahara
, and
S.
Yokoyama
,
Appl. Phys. Lett.
68
,
3257
(
1996
).
38.
J.
Dendooven
,
D.
Deduytsche
,
J.
Musschoot
,
R. L.
Vanmeirhaeghe
, and
C.
Detavernier
,
J. Electrochem. Soc.
156
,
P63
(
2009
).
39.
J.
Dendooven
,
D.
Deduytsche
,
J.
Musschoot
,
R. L.
Vanmeirhaeghe
, and
C.
Detavernier
,
J. Electrochem. Soc.
157
,
G111
(
2010
).
You do not currently have access to this content.