High material quality silicon nitride thin film deposition by plasma enhanced atomic layer deposition (PEALD) is necessary for many advanced semiconductor device and memory fabrication applications. Understanding film growth mechanism is quite important not only for the device production control but also device performance due to the strong correlation of film growth speed and film chemical property. Nevertheless, predicting film deposition rates, let alone film quality, is difficult as quantitative surface reaction mechanisms are still not well known and the species fluxes that play the central role in film growth are not easy to measure. In this paper, the authors describe how a plasma reactor model for the nitridation step required in PEALD of silicon nitride can be combined with a phenomenological site balance model to predict film growth rate variation with some key process parameters. The relative insensitivity of growth rates to plasma power are explained by competing destruction and regeneration mechanisms for NH3, an important nitrogen source in Si3N4 growth. The model also helps to reveal why H2 can be important.

1.
S.
Aritome
,
NAND Flash Memory Technologies
(
IEEE
,
Piscataway
,
2015
).
2.
X.
Huang
 et al,
International Electron Devices Meeting, Technical Digest
(
1999
), pp.
67
70
.
3.
L.
Tang
,
Y.
Zhu
,
J.
Yang
,
Y.
Li
,
W.
Zhou
,
J.
Xie
,
Y.
Liu
, and
F.
Yang
,
J. Semicond.
30
,
096005
(
2009
).
4.
D. W.
Kim
,
J. M.
Maeng
,
S. W.
Kim
,
J. C.
Her
,
S. J.
Yeon
,
H. K.
Kim
, and
K. S.
Seo
,
ECS Trans.
6
,
577
(
2007
).
5.
R.
Wüest
,
P.
Strasser
,
F.
Robin
,
D.
Erni
, and
H.
Jäckel
,
J. Vac. Sci. Technol., B
23
,
3197
(
2005
).
6.
J.
Park
 et al,
Proceeding of International Electron Devices Meeting Session
(
2015
), Vol.
26
, p.
5
.
7.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
29
,
050801
(
2011
).
8.
W. J.
Lee
,
U. J.
Kim
,
C. H.
Han
,
M. H.
Chun
,
S. K.
Rha
, and
Y. S.
Lee
,
J. Korean Phys. Soc.
47
,
S598
(
2005
).
9.
S.
Yokoyama
,
H.
Goto
,
T.
Miyamoto
,
N.
Ikeda
, and
K.
Shibahara
,
Appl. Surf. Sci.
112
,
75
(
1997
).
10.
H. C. M.
Knoops
,
K.
de Peuter
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
107
,
014102
(
2015
).
11.
K.
Park
,
W. D.
Yun
,
B. J.
Choi
,
H. D.
Kim
,
W. J.
Lee
,
S. K.
Rha
, and
C. O.
Park
,
Thin Solid Films
517
,
3975
(
2009
).
12.
R. A.
Ovanesyan
,
D. M.
Hausmann
, and
S.
Agarwal
,
ACS Appl. Mater. Interfaces
7
,
10806
(
2015
).
13.
S.
Weeks
,
G.
Nowling
,
N.
Fuchigami
,
M.
Bowes
, and
K.
Littau
,
J. Vac. Sci. Technol., A
34
,
01A140
(
2016
).
14.
S. W.
King
,
J. Vac. Sci. Technol., A
29
,
041501
(
2011
).
15.
H.
Goto
,
K.
Shibahara
, and
S.
Yokoyama
,
Appl. Phys. Lett.
68
,
3257
(
1996
).
16.
A.
Nakajima
,
T.
Yoshimoto
,
T.
Kidera
, and
S.
Yokoyama
,
Appl. Phys. Lett.
79
,
665
(
2001
).
17.
A.
Nakajima
,
Q. D. M.
Khosru
,
T.
Yoshimoto
,
T.
Kidera
, and
S.
Yokoyama
,
Appl. Phys. Lett.
80
,
1252
(
2002
).
18.
H.
Sugai
,
I.
Ghanashev
, and
M.
Nagatsu
,
Plasma Sources Sci. Trans.
7
,
192
(
1998
).
19.
C.
Tian
,
T.
Nozawa
,
K.
Ishibasi
,
H.
Kameyama
, and
T.
Morimoto
,
J. Vac. Sci. Technol., A
24
,
1421
(
2006
).
20.
Y.
Yasaka
,
A.
Sakae
,
N.
Sugimoto
,
H.
Takeno
, and
H.
Hojo
,
Jpn. J. Appl. Phys., Part I
45
,
8059
(
2006
).
21.
D. M.
Knotter
and
T. J. J.
Denteneer
,
J. Electrochem. Soc.
148
,
F43
(
2001
).
22.
G.
Peev
,
L.
Zambov
, and
Y.
Yanakiev
,
Thin Solid Films
189
,
275
(
1990
).
23.
J.
Skopp
,
J. Chem. Educ.
86
,
1341
(
2009
).
24.
G.
Lucovsky
,
P. D.
Richard
,
D. V.
Tsu
,
S. Y.
Lin
, and
R. J.
Markunas
,
J. Vac. Sci. Technol., A
4
,
681
(
1986
).
25.
D. L.
Smith
,
A. S.
Alimonda
, and
F. J.
von Preissig
,
J. Vac. Sci. Technol., B
8
,
551
(
1990
).
26.
M. J.
Kushner
,
J. Appl. Phys.
71
,
4173
(
1992
).
27.
A. A.
Bagatur'yants
,
K. P.
Novoselov
,
A. A.
Safonov
,
J. V.
Cole
,
M.
Stoker
, and
A. A.
Korkin
,
Surf. Sci.
486
,
213
(
2001
).
28.
P. J.
van den Oever
,
J. H.
van Helden
,
C. C. H.
Lamers
,
R.
Engeln
,
D. C.
Schram
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
98
,
093301
(
2005
).
29.
Y. B.
Park
and
S. W.
Rhee
,
J. Mater. Sci.: Mater. Electron.
12
,
515
(
2001
).
30.
R. A.
Arakoni
,
A. N.
Bhoj
, and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
40
,
2476
(
2007
).
31.
S. A.
Konanov
and
V. V.
Krzhizhanovskaya
,
J. Phys. Conf. Ser.
574
,
012144
(
2015
).
32.
H.
Caquineau
,
G.
Dupont
,
B.
Despax
, and
J. P.
Couderc
,
J. Vac. Sci. Technol., A
14
,
2071
(
1996
).
33.
M.
Belyansky
 et al,
J. Vac. Sci. Technol., A
26
,
517
(
2008
).
34.
VizGlow®: Plasma Modeling Software for Multi-Dimensional Simulations of Non-Equilibrium Discharge Systems, User Manual, Version 2.1
(
Esgee Technologies Inc
.,
2017
).
35.
A. R.
Forouhi
and
I.
Bloomer
,
Phys. Rev. B
34
,
7018
(
1986
).
36.
L. L.
Raja
,
S.
Mahadevan
,
P. L. G.
Ventzek
, and
J.
Yoshikawa
,
J. Vac. Sci. Technol., A
31
,
031304
(
2013
).
37.
J.
Öjekull
 et al.,
J. Chem. Phys.
120
,
7391
(
2004
).
38.
V. G.
Anicich
,
J. Phys. Chem. Ref. Data
22
,
1469
(
1993
).
39.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Trans.
14
,
722
(
2005
).
40.
Avogadro website
,” https://avogadro.cc/.
You do not currently have access to this content.