Heterogeneous multilayered oxide channel materials have enabled low temperature, high mobility thin film transistor technology by solution processing. The authors report the growth and characterization of solution-based, highly uniform and c-axis orientated zinc oxide (ZnO) single and multilayered thin films. Quasisuperlattice (QSL) metal oxide thin films are deposited by spin-coating and the structural, morphological, optical, electronic, and crystallographic properties are investigated. In this work, the authors show that uniform, coherent multilayers of ZnO can be produced from liquid precursors using an iterative coating-drying technique that shows epitaxial-like growth on SiO2, at a maximum temperature of 300 °C in air. As QSL films are grown with a greater number of constituent layers, the crystal growth direction changes from m-plane to c-plane, confirmed by x-ray and electron diffraction. The film surface is smooth for all QSLs with root mean square roughness <0.14 nm. X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) of electronic defects in the QSL structure show a dependence of defect emission on the QSL thickness, and PL mapping demonstrates that the defect signature is consistent across the QSL film in each case. XPS and valence-band analysis shown a remarkably consistent surface composition and electronic structure during the annealing process developed here.

1.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
2.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
3.
R. A.
Street
,
Adv. Mater.
21
,
2007
(
2009
).
4.
G.
Huang
,
L.
Duan
,
G.
Dong
,
D.
Zhang
, and
Y.
Qiu
,
ACS Appl. Mater. Interface
6
,
20786
(
2014
).
5.
C.
Glynn
and
C.
O'Dwyer
,
Adv. Mater. Interfaces
4
,
1600610
(
2017
).
6.
H.
Lingling
 et al.,
Jpn. J. Appl. Phys., Part 1
54
,
04DJ07
(
2015
).
7.
S.
Shigehiko
,
H.
Takeo
,
K.
Motoki
,
K.
Kazuto
,
Y.
Mitsuaki
, and
I.
Masataka
,
Jpn. J. Appl. Phys., Part 1
47
,
2845
(
2008
).
9.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
,
1897
(
2001
).
10.
R.
Könenkamp
,
R. C.
Word
, and
C.
Schlegel
,
Appl. Phys. Lett.
85
,
6004
(
2004
).
11.
M.-C.
Jeong
,
B.-Y.
Oh
,
M.-H.
Ham
, and
J.-M.
Myoung
,
Appl. Phys. Lett.
88
,
202105
(
2006
).
12.
X.
Wang
,
C. J.
Summers
, and
Z. L.
Wang
,
Nano Lett.
4
,
423
(
2004
).
13.
D.
Calestani
,
M.
Zha
,
R.
Mosca
,
A.
Zappettini
,
M. C.
Carotta
,
V.
Di Natale
, and
L.
Zanotti
,
Sens. Actuators, B
144
,
472
(
2010
).
14.
J. X.
Wang
,
X. W.
Sun
,
Y.
Yang
,
H.
Huang
,
Y. C.
Lee
,
O. K.
Tan
, and
L.
Vayssieres
,
Nanotechnology
17
,
4995
(
2006
).
15.
J.
Jean
,
S.
Chang
,
P. R.
Brown
,
J. J.
Cheng
,
P. H.
Rekemeyer
,
M. G.
Bawendi
,
S.
Gradečak
, and
V.
Bulović
,
Adv. Mater.
25
,
2790
(
2013
).
16.
H.
Park
 et al.,
Nano Lett.
13
,
233
(
2013
).
17.
Z. L.
Wang
and
J.
Song
,
Science
312
,
242
(
2006
).
18.
Q.
Zhang
,
C. S.
Dandeneau
,
X.
Zhou
, and
G.
Cao
,
Adv. Mater.
21
,
4087
(
2009
).
19.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
20.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
21.
R.
Vázquez-Arreguín
,
M.
Aguilar-Frutis
,
C.
Falcony-Guajardo
,
A.
Castañeda-Galván
,
L.
Mariscal-Becerra
,
S.
Gallardo-Hernández
,
G.
Alarcón-Flores
, and
M.
García-Rocha
,
ECS J. Solid State Sci. Technol.
5
,
Q101
(
2016
).
22.
F. K.
Shan
and
Y. S.
Yu
,
J. Eur. Ceram. Soc.
24
,
1869
(
2004
).
23.
W.
Taeg Lim
and
C.
Hyo Lee
,
Thin Solid Films
353
,
12
(
1999
).
24.
Y.
Tak
,
D.
Park
, and
K.
Yong
,
J. Vac. Sci. Technol., B
24
,
2047
(
2006
).
25.
L.
Armelao
,
M.
Fabrizio
,
S.
Gialanella
, and
F.
Zordan
,
Thin Solid Films
394
,
89
(
2001
).
26.
Y. H.
Hwang
,
J. H.
Jeon
,
S.-J.
Seo
, and
B.-S.
Bae
,
Electrochem. Solid-State Lett.
12
,
H336
(
2009
).
27.
A. G.
Emslie
,
F. T.
Bonner
, and
L. G.
Peck
,
J. Appl. Phys.
29
,
858
(
1958
).
28.
C.
Glynn
,
D.
Creedon
,
H.
Geaney
,
J.
O'Connell
,
J. D.
Holmes
, and
C.
O'Dwyer
,
ACS Appl. Mater. Interface
6
,
2031
(
2014
).
29.
K.
Si Joon
,
Y.
Seokhyun
, and
K.
Hyun Jae
,
Jpn. J. Appl. Phys., Part 1
53
,
02BA02
(
2014
).
30.
T.
Schneller
,
R.
Waser
,
M.
Kosec
, and
D.
Payne
,
Chemical Solution Deposition of Functional Oxide Thin Films
, 1st ed. (
Springer
,
London
,
2013
).
31.
C.
Glynn
,
D.
Aureau
,
G.
Collins
,
S.
O'Hanlon
,
A.
Etcheberry
, and
C.
O'Dwyer
,
Nanoscale
7
,
20227
(
2015
).
32.
S. Y.
Park
 et al.,
Adv. Mater.
24
,
834
(
2012
).
33.
J.
Chang
,
Z.
Lin
,
M.
Lin
,
C.
Zhu
,
J.
Zhang
, and
J.
Wu
,
J. Mater. Chem. C
3
,
1787
(
2015
).
34.
L.-C.
Liu
,
J.-S.
Chen
,
J.-S.
Jeng
, and
W.-Y.
Chen
,
ECS J. Solid State Sci. Technol.
2
,
Q59
(
2013
).
35.
H.
Hosono
,
J. Non-Cryst. Solids
352
,
851
(
2006
).
36.
K. K.
Banger
,
Y.
Yamashita
,
K.
Mori
,
R. L.
Peterson
,
T.
Leedham
,
J.
Rickard
, and
H.
Sirringhaus
,
Nat. Mater.
10
,
45
(
2011
).
37.
E. M. C.
Fortunato
,
P. M. C.
Barquinha
,
A. C. M. B. G.
Pimentel
,
A. M. F.
Gonçalves
,
A. J. S.
Marques
,
L. M. N.
Pereira
, and
R. F. P.
Martins
,
Adv. Mater.
17
,
590
(
2005
).
38.
H.
Akazawa
,
J. Vac. Sci. Technol., A
35
,
021503
(
2017
).
39.
J. G.
Labram
,
N. D.
Treat
,
Y.-H.
Lin
,
C. H.
Burgess
,
M. A.
McLachlan
, and
T. D.
Anthopoulos
,
Adv. Funct. Mater.
26
,
1656
(
2016
).
40.
Y. H.
Lin
 et al.,
Adv. Sci.
2
,
1500058
(
2015
).
41.
H.-A.
Chin
,
I.-C.
Cheng
,
C.-I.
Huang
,
Y.-R.
Wu
,
W.-S.
Lu
,
W.-L.
Lee
,
J. Z.
Chen
,
K.-C.
Chiu
, and
T.-S.
Lin
,
J. Appl. Phys.
108
,
054503
(
2010
).
42.
H.
Faber
 et al.,
Sci. Adv.
3
,
e1602640
(
2017
).
43.
J. G.
Labram
 et al.,
Adv. Funct. Mater.
25
,
1727
(
2015
).
44.
D.
Buckley
,
R.
McCormack
, and
C.
O'Dwyer
,
J. Phys. D: App. Phys.
50
,
16LT01
(
2017
).
45.
B.-Z.
Dong
,
G.-J.
Fang
,
J.-F.
Wang
,
W.-J.
Guan
, and
X.-Z.
Zhao
,
J. Appl. Phys.
101
,
033713
(
2007
).
46.
T.
Yamada
,
H.
Makino
,
N.
Yamamoto
, and
T.
Yamamoto
,
J. Appl. Phys.
107
,
123534
(
2010
).
47.
S.
Hayamizu
,
H.
Tabata
,
H.
Tanaka
, and
T.
Kawai
,
J. Appl. Phys.
80
,
787
(
1996
).
48.
H.-B.
Fan
,
S.-Y.
Yang
,
P.-F.
Zhang
,
H.-Y.
Wei
,
X.-L.
Liu
,
C.-M.
Jiao
,
Q.-S.
Zhu
,
Y.-H.
Chen
, and
Z.-G.
Wang
,
Chin. Phys. Lett.
24
,
2108
(
2007
).
49.
M. N.
Islam
,
T. B.
Ghosh
,
K. L.
Chopra
, and
H. N.
Acharya
,
Thin Solid Films
280
,
20
(
1996
).
50.
J.
Hwang
,
K.
Lee
,
Y.
Jeong
,
Y. U.
Lee
,
C.
Pearson
,
M. C.
Petty
, and
H.
Kim
,
Adv. Mater. Interface
1
,
1400206
(
2014
).
51.
Y.-H.
Lin
,
H.
Faber
,
K.
Zhao
,
Q.
Wang
,
A.
Amassian
,
M.
McLachlan
, and
T. D.
Anthopoulos
,
Adv. Mater.
25
,
4340
(
2013
).
52.
S. R.
Thomas
,
P.
Pattanasattayavong
, and
T. D.
Anthopoulos
,
Chem. Soc. Rev.
42
,
6910
(
2013
).
53.
L.-C.
Liu
,
J.-S.
Chen
, and
J.-S.
Jeng
,
ECS Solid State Lett.
4
,
Q59
(
2015
).
54.
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
,
J. Appl. Phys.
79
,
7983
(
1996
).
55.
F.
Fabbri
 et al.,
Sci. Rep.
4
,
5158
(
2014
).
56.
T.
Minami
,
S.
Ida
, and
T.
Miyata
,
Thin Solid Films
416
,
92
(
2002
).
57.
J.
Tauc
,
The Optical Properties of Solids
(
Academic
,
New York
,
1966
).
58.
J.
Anderson
and
G. V. d. W.
Chris
,
Rep. Prog. Phys.
72
,
126501
(
2009
).
59.
See supplementary material at http://dx.doi.org/10.1116/1.5001758 for AFM images of the ZnO QSL surfaces, XPS data of ZnO formed by acetate and oxide precursors and PL spectra form all regions of all ZnO QSL materials.

Supplementary Material

You do not currently have access to this content.