The general tendency in industrial machining and forming operations toward further reduced operation time and increased efficiency requires continuous improvements of protective coatings regarding their tribo-mechanical properties. Alloying arc evaporated Ti1-xAlxN with small amounts of molybdenum (Mo) has shown very promising results to further improve the tribological properties of the industrially widely used Ti-Al-N. Therefore, the authors study in detail the effect of Mo on the thermo-mechanical properties of Ti1-xAlxN coatings, as well as their wear behavior at elevated temperatures. First principle density functional theory (DFT) calculations are conducted for face-centered cubic c-Al1-yMoyN, c-Ti1-yMoyN, and c-Ti1-x-yAlxMoyN showing increasing energy of formation with increasing Mo incorporation for all structures investigated. However, the thereby (DFT) obtained/calculated lattice parameters for comparable compositions perfectly matches with those of the single-phase face-centered cubic structured c-Ti0.55Al0.42Mo0.03N, c-Ti0.53Al0.41Mo0.06N, and c-Ti0.50Al0.38Mo0.12N coatings studied. These coatings have an as deposited hardness of about 28 GPa, which can be maintained upon vacuum annealing up to Ta = 800 °C. At higher temperatures, their hardness decreases as the formation of the weaker w-AlN and Mo3Al phases occurs. In contrast to that, the abrasive wear of Mo-containing c-Ti1-x-yAlxMoyN during dry-sliding high temperature ball-on-disk tests (against 6 mm alumina balls at 700 °C) is significantly reduced to 1–2.0 × 10−6 mm3/N m, as compared to the Mo-free Ti0.56Al0.44N counterpart. This is the result of the presence of solid lubricant MoO3 phases in the wear tracks of the arc evaporated c-Ti1-x-yAlxMoyN coatings investigated—confirmed by a combined energy dispersive spectroscopy and x-ray photoelectron spectroscopy analysis. Based on their findings, the authors can conclude that the addition of up to 12 at.% Mo (of the metal fraction) to Ti0.56Al0.44N significantly improves their high temperature wear resistance by simultaneously keeping the outstanding coating characteristics of pure Ti1-xAlxN.

1.
J.
Vetter
,
Surf. Coat. Technol.
76–77
,
719
(
1995
).
2.
Y.
Tanaka
,
T. M.
Gür
,
M.
Kelly
,
S. B.
Hagstrom
,
T.
Ikeda
,
K.
Wakihira
, and
H.
Satoh
,
J. Vac. Sci. Technol., A
10
,
1749
(
1992
).
3.
P. H.
Mayrhofer
,
L.
Hultman
,
J. M.
Schneider
,
P.
Staron
, and
H.
Clemens
,
Int. J. Mater. Res.
98
,
1054
(
2007
).
4.
F.
Vaz
,
L.
Rebouta
,
M.
Andritschky
,
M. F.
Da Silva
, and
J. C.
Soares
,
J. Eur. Ceram. Soc.
17
,
1971
(
1997
).
5.
R.
Rachbauer
 et al,
J. Appl. Phys.
110
,
23515
(
2011
).
6.
W.-D.
Münz
,
J. Vac. Sci. Technol., A
4
,
2717
(
1986
).
7.
L.
Chen
,
J.
Paulitsch
,
Y.
Du
, and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
206
,
2954
(
2011
).
9.
P. H.
Mayrhofer
,
C.
Mitterer
,
L.
Hultman
, and
H.
Clemens
,
Prog. Mater. Sci.
51
,
1032
(
2006
).
10.
J.
Vetter
,
R.
Knaup
,
H.
Dweletzki
,
E.
Schneider
, and
S.
Vogler
,
Surf. Coat. Technol.
86–87
,
739
(
1996
).
11.
H.
Hasegawa
,
M.
Kawate
, and
T.
Suzuki
,
Surf. Coat. Technol.
200
,
2409
(
2005
).
12.
R.
Hollerweger
,
L.
Zhou
,
D.
Holec
,
C. M.
Koller
,
R.
Rachbauer
,
P.
Polcik
, and
P. H.
Mayrhofer
,
J. Appl. Phys.
119
,
65304
(
2016
).
13.
C.
Sabitzer
,
J.
Paulitsch
,
S.
Kolozsvári
,
R.
Rachbauer
, and
P. H.
Mayrhofer
,
Vacuum
106
,
49
(
2014
).
14.
H.
Riedl
,
C. M.
Koller
,
A.
Limbeck
,
J.
Kalaš
,
P.
Polcik
, and
P. H.
Mayrhofer
,
J. Vac. Sci. Technol., A
33
,
05E129
(
2015
).
15.
A. A.
Voevodin
,
C.
Muratore
, and
S. M.
Aouadi
,
Surf. Coat. Technol.
257
,
247
(
2014
).
17.
M.
Pfeiler
,
K.
Kutschej
,
M.
Penoy
,
C.
Michotte
,
C.
Mitterer
, and
M.
Kathrein
,
Surf. Coat. Technol.
202
,
1050
(
2007
).
18.
K.
Kutschej
,
P. H.
Mayrhofer
,
M.
Kathrein
,
P.
Polcik
, and
C.
Mitterer
,
Surf. Coat. Technol.
200
,
1731
(
2005
).
19.
A.
Magnéli
,
Acta Crystallogr.
6
,
495
(
1953
).
20.
A.
Magneli
and
B. M.
Oughton
,
Acta Chem. Scand.
5
,
581
(
1951
).
21.
G.
Gassner
,
P. H.
Mayrhofer
,
K.
Kutschej
,
C.
Mitterer
, and
M.
Kathrein
,
Surf. Coat. Technol.
201
,
3335
(
2006
).
22.
S.
Kalpakjian
,
S. R.
Schmid
, and
E.
Werner
,
Werkstofftechnik
(
Pearson Studium
,
München
,
2011
).
23.
S. A.
Glatz
,
C. M.
Koller
,
H.
Bolvardi
,
S.
Kolozsvári
,
H.
Riedl
, and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
311
,
330
(
2017
).
24.
M.
Pfeiler
,
K.
Kutschej
,
M.
Penoy
,
C.
Michotte
,
C.
Mitterer
, and
M.
Kathrein
,
Int. J. Refract. Met. Hard Mater.
27
,
502
(
2009
).
25.
P. H.
Mayrhofer
,
P. E.
Hovsepian
,
C.
Mitterer
, and
W.-D.
Münz
,
Surf. Coat. Technol.
177–178
,
341
(
2004
).
26.
D. G.
Sangiovanni
,
V.
Chirita
, and
L.
Hultman
,
Thin Solid Films
520
,
4080
(
2012
).
27.
Plansee SE, “Molybdenum,” accessed 21 June
2016
, available at https://www.plansee.com/en/materials/molybdenum.html.
28.
J. H.
Scofield
,
J. Electron Spectrosc. Relat. Phenom.
8
,
129
(
1976
).
29.
G.
Beamson
and
D.
Briggs
,
High Resolution XPS of Organic Polymers
(
Wiley
,
Chichester [u.a.]
,
1993
).
30.
“NIST X-Ray Photoelectron Spectroscopy Database, Version 4.1,” National Institute of Standards and Technology, Gaithersburg, 2012, http://srdata.nist.gov/xps/
31.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
32.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1994
).
33.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
36.
A.
van de Walle
 et al,
Calphad
42
,
13
(
2013
).
37.
F. F.
Klimashin
,
H.
Euchner
, and
P. H.
Mayrhofer
,
Acta Mater.
107
,
273
(
2016
).
38.
D. G.
Sangiovanni
,
V.
Chirita
, and
L.
Hultman
,
Phys. Rev. B
81
,
104107
(
2010
).
39.
H.
Euchner
and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
275
,
214
(
2015
).
40.
L.
Chen
,
D.
Holec
,
Y.
Du
, and
P. H.
Mayrhofer
,
Thin Solid Films
519
,
5503
(
2011
).
41.
R.
Rachbauer
,
D.
Holec
, and
P. H.
Mayrhofer
,
Appl. Phys. Lett.
97
,
151901
(
2010
).
42.
P. H.
Mayrhofer
,
A.
Hörling
,
L.
Karlsson
,
J.
Sjölén
,
T.
Larsson
,
C.
Mitterer
, and
L.
Hultman
,
Appl. Phys. Lett.
83
,
2049
(
2003
).
43.
P. H.
Mayrhofer
,
R.
Rachbauer
, and
D.
Holec
,
Scr. Mater.
63
,
807
(
2010
).
44.
A.
Hörling
,
L.
Hultman
,
M.
Odén
,
J.
Sjölén
, and
L.
Karlsson
,
Surf. Coat. Technol.
191
,
384
(
2005
).
45.
P. H.
Mayrhofer
,
F. D.
Fischer
,
H. J.
Böhm
,
C.
Mitterer
, and
J. M.
Schneider
,
Acta Mater.
55
,
1441
(
2007
).
46.
R.
Rachbauer
,
E.
Stergar
,
S.
Massl
,
M.
Moser
, and
P. H.
Mayrhofer
,
Scr. Mater.
61
,
725
(
2009
).
47.
R.
Hollerweger
,
H.
Riedl
,
J.
Paulitsch
,
M.
Arndt
,
R.
Rachbauer
,
P.
Polcik
,
S.
Primig
, and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
257
,
78
(
2014
).
48.
N. E.
Christensen
and
I.
Gorczyca
,
Phys. Rev. B
47
,
4307
(
1993
).
49.
Q.
Xia
,
H.
Xia
, and
A. L.
Ruoff
,
J. Appl. Phys.
73
,
8198
(
1993
).
50.
A.
Sakly
,
J.
Costa
,
B.
Trindade
,
J. V.
Fernandes
, and
T.
Benameur
,
J. Alloys Compd.
502
,
480
(
2010
).
51.
M.
Woydt
,
A.
Skopp
,
I.
Dörfel
, and
K.
Witke
,
Wear
218
,
84
(
1998
).
52.
T.
Reeswinkel
,
D.
Music
, and
J. M.
Schneider
,
J. Phys. Condens. Matter
22
,
292203
(
2010
).
53.
A.
Joshi
and
H. S.
Hu
,
Surf. Coat. Technol.
76–77
,
499
(
1995
).
54.
S. A.
Glatz
,
R.
Hollerweger
,
P.
Polcik
,
R.
Rachbauer
,
J.
Paulitsch
, and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
266
,
1
(
2015
).
You do not currently have access to this content.