Crystalline AlN films are very attractive due to their properties such as high thermal stability and relatively high hardness and piezoelectric response. However, the deposition of dense textured AlN films with superior quality at a high deposition rate remains a challenge. In the present work, a reactive low duty cycle pulsed direct current magnetron sputtering (LDMS) process was employed to deposit AlN films on glass and silicon substrates. An arc-free discharge on the Al target was achieved by using short voltage pulses of 10 μs at a low duty cycle of 10%. The authors optimized the deposition conditions in terms of reactive gas flow, working pressure, average target power, substrate temperature, substrate bias, and the level of target erosion. With the optimized deposition conditions, the authors were able to obtain transparent crystalline AlN films with strong (002) preferential orientation and very good optical and mechanical properties: The AlN films with the highest refractive index of 2.1 present a hardness of up to 22 GPa and a low residual stress of ≈+300 MPa. Meanwhile, a relatively high deposition rate of ≈45 nm/min was achieved. A systematic comparison of the LDMS process with five other magnetron sputtering approaches working at optimized conditions indicated superior performance of the LDMS technique. This approach leads to the most promising results in terms of discharge stability, deposition rate, and film properties, and thus, it shows much promise for reactive deposition of dielectric materials and hard optical coatings.

1.
M. A.
Moreira
,
T.
Torndahl
,
I.
Katardjiev
, and
T.
Kubart
,
J. Vac. Sci. Technol., A
33
,
021518
(
2015
).
2.
K.
Tonisch
,
V.
Cimalla
,
Ch.
Foerster
,
H.
Romanus
,
O.
Ambacher
, and
D.
Dontsov
,
Sens. Actuators, A
132
,
658
(
2006
).
3.
G.
Wingqvist
,
Surf. Coat. Technol.
205
,
1279
(
2010
).
4.
G.
Slovin
,
M.
Xu
,
T.
Paramesh
,
T. E.
Schlesinger
, and
J. A.
Bain
,
IEEE Electron Device Lett.
37
,
568
(
2016
).
5.
S. X.
Zhao
,
X. Y.
Liu
,
L. Q.
Zhang
,
H. F.
Huang
,
J. S.
Shi
, and
P. F.
Wang
,
Nanoscale Res Lett.
11
,
137
(
2016
).
6.
X. H.
Xu
,
H. S.
Wu
,
C. J.
Zhang
, and
Z. H.
Jin
,
Thin Solid Films
388
,
62
(
2001
).
7.
K. A.
Aissa
,
N.
Semmar
,
A.
Achour
,
Q.
Simon
,
A.
Petit
,
J.
Camus
,
C.
Boulmer-Leborgne
, and
M. A.
Djoaudi
,
J. Phys. D: Appl. Phys.
47
,
355303
(
2014
).
8.
K.
Jagannadham
,
A. K.
Sharma
,
Q.
Wei
,
R.
Kalyanraman
, and
J.
Narayan
,
J. Vac. Sci. Technol., A
16
,
2804
(
1998
).
9.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol., A
30
,
030801
(
2012
).
10.
M.
Clement
,
E.
Iborra
,
J.
Sangrador
,
A.
Sanz-Hervas
,
L.
Vergera
, and
M.
Aguilar
,
J. Appl. Phys.
94
,
1495
(
2003
).
11.
J.
Vlček
,
J.
Rezek
,
J.
Houška
,
R.
Čerstvý
, and
R.
Bugyi
,
Surf. Coat. Technol.
236
,
550
(
2013
).
12.
M.
Hála
,
J.
Čapek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
055204
(
2012
).
13.
M.
Hála
,
R.
Vernhes
,
O.
Zabeida
,
E.
Bousser
,
J. E.
Klemberg-Sapieha
,
R.
Sargent
, and
L.
Martinu
,
Surf. Coat. Technol.
241
,
33
(
2014
).
14.
K. A.
Aissa
,
A.
Achour
,
O.
Elmazria
,
Q.
Simon
,
M.
Elhosni
,
P.
Boulet
,
S.
Robert
, and
M. A.
Djoaudi
,
J. Phys. D: Appl. Phys.
48
,
145307
(
2015
).
15.
A.
Guillaumot
,
F.
Lapostolle
,
C.
Dublanche-Tixier
,
J. C.
Oliveira
,
A.
Billard
, and
C.
Langlade
,
Vacuum
85
,
120
(
2010
).
16.
Ch. T.
Chang
,
Y. Ch.
Yang
,
J. W.
Lee
, and
B. S.
Lou
,
Thin Solid Films
572
,
161
(
2014
).
17.
J.
Kohout
,
E.
Bousser
,
T.
Schmitt
,
R.
Vernhes
,
O.
Zabeida
,
J.
Klemberg-Sapieha
, and
L.
Martinu
,
Vacuum
124
,
96
(
2016
).
18.
S. C.
Gujrathi
,
Metallized Polymers
, American Chemical Society Symposium Series Vol.
440
, edited by
E.
Sacher
,
J. J.
Pireaux
, and
S. P.
Kowalczyk
(
American Chemical Society
,
Washington, D.C.
,
1990
), pp.
88
109
.
19.
R.
Vernhes
and
L.
Martinu
,
Opt. Express
23
,
28501
(
2015
).
20.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
21.
J.
Lin
,
J. J.
Moore
,
W. D.
Sproul
,
B.
Mishra
, and
Z.
Wu
,
Thin Solid Films
518
,
1566
(
2009
).
22.
J.
Lin
,
B.
Wang
,
W. D.
Sproul
,
Y.
Ou
, and
I.
Dahan
,
J. Phys. D: Appl. Phys.
46
,
084008
(
2013
).
23.
M. A.
Lewis
,
D. A.
Glocker
, and
J.
Jorne
,
J. Vac. Sci. Technol., A
7
,
1019
(
1989
).
24.
H.
Cheng
,
Y.
Sun
, and
P.
Hing
,
Thin Solid Films
434
,
112
(
2003
).
25.
H.
Cheng
,
Y.
Sun
, and
P.
Hing
,
Surf. Coat. Technol.
166
,
231
(
2003
).
26.
H. Y.
Joo
,
H. J.
Kim
,
S. J.
Kim
, and
S. Y.
Kim
,
Thin Solid Films
368
,
67
(
2000
).
27.
G.
Este
and
W. D.
Westwood
,
J. Vac. Sci. Technol., A
5
,
1892
(
1987
).
28.
M. A.
Signore
,
E.
Bellini
,
A.
Taurino
,
M.
Catalano
,
M. C.
Martucci
,
P.
Creti
,
L.
Vasanelli
,
P.
Siciliano
, and
F.
Quaranta
,
J. Phys. Chem. Solids
74
,
1444
(
2013
).
29.
Y.
Pauleau
,
Vacuum
61
,
175
(
2001
).
30.
H.
Takeuchi
,
M.
Ohtsuka
, and
H.
Fukuyama
,
Phys. Status Solidi B
252
,
1163
(
2015
).
31.
A.
Mishra
,
P. J.
Kelly
, and
J. W.
Bradley
,
Plasma Sources Sci. Technol.
19
,
045014
(
2010
).
32.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
46
,
205205
(
2013
).
33.
F.
Medjani
,
R.
Sanjinés
,
G.
Allidi
, and
A.
Karimi
,
Thin Solid Films
515
,
260
(
2006
).
34.
J.
Wang
,
Q.
Zhang
,
G. F.
Yang
,
C. J.
Yao
,
Q. J.
Li
,
R.
Sun
,
J. L.
Zhao
, and
S. M.
Gao
,
J Mater Sci: Mater. Electron.
27
,
3026
(
2016
).
35.
Y.
Bao
,
L.
Liu
, and
Y.
Zhou
, Acta Mater.
53
,
4857
(
2005
).
36.
A.
Leyland
and
A.
Matthews
,
Wear
246
,
1
(
2000
).
37.
J.
Musil
,
J.
Sklenka
, and
R.
Cerstvy
,
Surf. Coat. Technol.
206
,
2105
(
2012
).
You do not currently have access to this content.