Surface oxidation states of transition (Fe and Co) and noble (Pd and Pt) metals were tailored by controlled exposure to O2 plasmas, thereby enabling their removal by specific organic chemistries. Of all organic chemistries studied, formic acid was found to be the most effective in selectively removing the metal oxide layer in both the solution and vapor phase. The etch rates of Fe, Co, Pd, and Pt films, through an alternating plasma oxidation and formic acid vapor reaction process, were determined to be 4.2, 2.8, 1.2, and 0.5 nm/cycle, respectively. Oxidation by atomic oxygen was an isotropic process, leading to an isotropic etch profile by organic vapor. Oxidation by low energy and directional oxygen ions was an anisotropic process and thus results in an anisotropic etch profile by organic vapor. This is successfully demonstrated in the patterning of Co with a high selectivity over the TiN hardmask, while preserving the desired static magnetic characteristic of Co.

1.
S.
Senni
,
L.
Torres
,
G.
Sassatelli
,
A.
Gamatie
, and
B.
Mussard
,
IEEE J. Emerging Sel. Top. Circuit Syst.
6
,
279
(
2016
).
2.
S.
Ishikawa
,
H.
Sato
,
M.
Yamanouchi
,
S.
Ikeda
,
S.
Fukami
,
F.
Matsukura
, and
H.
Ohno
,
J. Appl. Phys.
113
,
17C721
(
2013
).
3.
S.
Ikeda
,
J.
Hayakawa
,
Y.
Ashizawa
,
Y. M.
Lee
,
K.
Miura
,
H.
Hasegawa
,
M.
Tsunoda
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
93
,
082508
(
2008
).
4.
J. M.
Slaughter
,
Annu. Rev. Mater. Res.
39
,
277
(
2009
).
5.
M.
Gajek
 et al.,
Appl. Phys. Lett.
100
,
132408
(
2012
).
6.
K.
Takeuchi
,
Jpn. J. Appl. Phys.
55
,
04EA02
(
2016
).
7.
Y.
Ohsawa
 et al.,
IEEE Trans. Magn.
52
,
1
(
2016
).
8.
I.
Kazuyoshi
 et al.,
Jpn. J. Appl. Phys., Part 2
43
,
L499
(
2004
).
9.
S. R.
Min
,
H. N.
Cho
,
K. W.
Kim
,
Y. J.
Cho
,
S.-H.
Choa
, and
C. W.
Chung
,
Thin Solid Films
516
,
3507
(
2008
).
10.
T.
Kim
,
J. K.-C.
Chen
, and
J. P.
Chang
,
J. Vac. Sci. Technol., A
32
,
041305
(
2014
).
11.
T.
Kim
,
Y.
Kim
,
J. K.-C.
Chen
, and
J. P.
Chang
,
J. Vac. Sci. Technol., A
33
,
021308
(
2015
).
12.
A. A.
Garay
,
J. H.
Choi
,
S. M.
Hwang
, and
C. W.
Chung
,
ECS Solid State Lett.
4
,
P77
(
2015
).
13.
A. A.
Garay
,
S. M.
Hwang
,
J. H.
Choi
,
B. C.
Min
, and
C. W.
Chung
,
Vacuum
119
,
151
(
2015
).
14.
K.
Kinoshita
,
T.
Yamamoto
,
H.
Honjo
,
N.
Kasai
,
S.
Ikeda
, and
H.
Ohno
,
Jpn. J. Appl. Phys.
51
,
08HA01
(
2012
).
15.
A. S.
Orland
and
R.
Blumenthal
,
J. Vac. Sci. Technol., B
23
,
1597
(
2005
).
16.
G.
Xun
,
K.
Yoshiyuki
,
N.
Toshihisa
, and
S.
Seiji
,
J. Phys. D: Appl. Phys.
47
,
322002
(
2014
).
17.
K. B.
Ramos
,
M. J.
Saly
, and
Y. J.
Chabal
,
Coord. Chem. Rev.
257
,
3271
(
2013
).
18.
N. R.
Johnson
,
H. X.
Sun
,
K.
Sharma
, and
S. M.
George
,
J. Vac. Sci. Technol., A
34
,
05063
(
2016
).
19.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
J. Phys. Chem. C
119
,
25385
(
2015
).
20.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
Chem. Mater.
27
,
3648
(
2015
).
21.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
ECS J. Solid State Sci.
4
,
N5013
(
2015
).
22.
M.
Rasadujjaman
,
Y.
Nakamura
,
M.
Watanabe
,
E.
Kondoh
, and
M. R.
Baklanov
,
Microelectron. Eng.
153
,
5
(
2016
).
23.
J. K. C.
Chen
,
T.
Kim
,
N. D.
Altieri
, and
E.
Chen
,
J. Vac. Sci. Technol., A
35
,
031304
(
2017
).
24.
P.
Braunstein
,
J. Organomet. Chem.
689
,
3953
(
2004
).
25.
A. L.
Henne
,
M. S.
Newman
,
L. L.
Quill
, and
R. A.
Staniforth
,
J. Am. Chem. Soc.
69
,
1819
(
1947
).
26.
S.
Aygen
and
R.
Vaneldik
,
Chem. Ber.
122
,
315
(
1989
).
27.
D.
Panias
,
M.
Taxiarchou
,
I.
Douni
,
I.
Paspaliaris
, and
A.
Kontopoulos
,
Hydrometallurgy
43
,
219
(
1996
).
28.
S. O.
Lee
,
T.
Tran
,
B. H.
Jung
,
S. J.
Kim
, and
M. J.
Kim
,
Hydrometallurgy
87
,
91
(
2007
).
29.
S. J.
Flora
and
V.
Pachauri
,
Int. J. Environ. Res. Public Health
7
,
2745
(
2010
).
30.
J.
Rubio
and
E.
Matijević
,
J. Colloid Interface Sci.
68
,
408
(
1979
).
31.
D. E.
Aspnes
,
Am. J. Phys.
50
,
704
(
1982
).
32.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum
,
New York
,
1984
).
33.
J. K. C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vac. Sci. Technol., A
35
,
05C304
(
2017
).
34.
R. A.
Haines
and
B. E.
Douglas
,
Inorg. Chem.
4
,
452
(
1965
).
35.
J.
Hidaka
and
B. E.
Douglas
,
Inorg. Chem.
3
,
1724
(
1964
).
36.
J.
Hidaka
and
B. E.
Douglas
,
Inorg. Chem.
3
,
1180
(
1964
).
37.
C. T.
Liu
and
B. E.
Douglas
,
Inorg. Chem.
3
,
1356
(
1964
).
38.
B. E.
Douglas
,
J. G.
Brushmiller
, and
R. A.
Haines
,
Inorg. Chem.
2
,
1194
(
1963
).
39.
J.
Krizova
,
V.
Kriz
,
J.
Kloubek
, and
B.
Dingwerth
, U.S. patent 12/449,930 (11 June
2013
).
40.
M. A.
Boles
,
D.
Ling
,
T.
Hyeon
, and
D. V.
Talapin
,
Nat. Mater.
15
,
141
(
2016
).
41.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 76th ed. (
CRC
,
New York
,
1995
).
42.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
, 1st ed. (
CRC
,
Boca Raton
,
2007
).
You do not currently have access to this content.