Plasma-facing materials in the divertor of a magnetic fusion reactor have to tolerate steady state plasma heat fluxes in the range of 10 MW/m2 for ∼107 s, in addition to fusion neutron fluences, which can damage the plasma-facing materials to high displacements per atom (dpa) of ∼50 dpa. Materials solutions needed for the plasma-facing components are yet to be developed and tested. The material plasma exposure experiment (MPEX) is a newly proposed steady state linear plasma device designed to deliver the necessary plasma heat flux to a target for testing, including the capability to expose a priori neutron-damaged material samples to those plasmas. The requirements of the plasma source needed to deliver the required heat flux are being developed on the Proto-MPEX device which is a linear high-intensity radio-frequency (RF) plasma source that combines a high-density helicon plasma generator with electron- and ion-heating sections. The device is being used to study the physics of heating overdense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (∼30 kW) are coupled to the electrons in the overdense helicon plasma via electron Bernstein waves and ion cyclotron heating at 7–9 MHz (∼30 kW) is via a magnetic beach approach. High plasma densities >6 × 1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be >10 MW/m2, depending on the operating conditions. An initial plasma material interaction experiment with a thin tungsten target exposed to this high heat flux in a predominantly helium plasma showed helium bubble formation near the surface, with no indication of source impurity contamination on the target.

1.
Research Needs for Magnetic Fusion Energy Sciences-Report of the Research Needs Workshop (ReNeW)
,”
2009
, http://burningplasma.org/web/ReNeW/ReNeW.report.web2.pdf.
2.
R. A.
Pitts
 et al.,
J. Nucl. Mater.
415
,
S957
(
2011
).
3.
M.
Rieth
 et al.,
J. Nucl. Mater.
417
,
463
(
2011
).
4.
J.
Rapp
,
T. M.
Biewer
,
J.
Canik
,
J. B. O.
Caughman
,
R. H.
Goulding
,
D. L.
Hillis
,
J. D.
Lore
, and
L. W.
Owen
,
Fusion Sci. Technol.
64
,
237
(
2013
).
5.
B.
Unterberg
 et al.,
Fusion Eng. Des.
86
,
1797
(
2011
).
6.
J.
Rapp
 et al.,
Fusion Eng. Des.
85
,
1455
(
2010
).
7.
J.
Rapp
 et al.,
IEEE Trans. Plasma Sci.
44
,
3456
(
2016
).
8.
A.
Lumsdaine
 et al.,
Fusion Eng. Des.
109–111
,
1714
(
2016
).
9.
S.
Hiroe
 et al.,
Nucl. Fusion
28
,
2249
(
1988
).
10.
H.
Laqua
,
Plasma Phys. Controlled Fusion
49
,
R1
(
2007
).
11.
A. P.
Smirnov
,
R. W.
Harvey
, and
K.
Kupfer
,
Bull Am. Phys. Soc.
39
,
1626
(
1994
).
12.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
New York
,
1992
), p.
342
.
13.
E. A.
Bering
 III
 et al.,
Phys. Plasmas
17
,
043509
(
2010
).
14.
B. W.
Longmier
 et al.,
J. Propul. Power
30
,
123
(
2014
).
15.
B.
McVey
, MIT-PFC Report RR-84-12,
1984
.
16.
R. J.
Colchin
,
D. L.
Hillis
,
R.
Maingi
,
C. C.
Klepper
, and
N. H.
Brooks
,
Rev. Sci. Instrum.
74
,
2068
(
2003
).
17.
H. B.
Ray
,
T. M.
Biewer
,
D. T.
Fehling
,
R. C.
Isler
, and
E. A.
Unterberg
,
Rev. Sci. Instrum.
87
,
11E711
(
2016
).
18.
J.
Rapp
,
L. W.
Owen
,
X.
Bonnin
,
J. F.
Caneses
,
J. M.
Canik
,
C.
Corr
, and
J. D.
Lore
,
J. Nucl. Mater.
463
,
510
(
2015
).
19.
T. M.
Biewer
,
S.
Meitner
,
J.
Rapp
,
H.
Ray
, and
G.
Shaw
,
Rev. Sci. Instrum.
87
,
11E518
(
2016
).
20.
M.
Showers
,
T. M.
Biewer
,
J. B. O.
Caughman
,
D. C.
Donovan
,
R. H.
Goulding
, and
J.
Rapp
,
Rev. Sci. Instrum.
87
,
11D412
(
2016
).
21.
D.
Arnuch
,
Phys. Plasmas
7
,
3042
(
2000
).
22.
Chao
Ma
,
Gao
Zhao
,
Yu
Wang
,
Zhongwei
Liu
,
Lijun
Sang
, and
Chen
Qiang
,
IEEE Trans. Plasma Sci.
43
,
3702
(
2015
).
23.
R. H.
Goulding
 et al., “Progress in the development of a high power helicon plasma source for the materials plasma exposure experiment,”
Fusion Sci. Technol.
(accepted).
24.
J.
Rapp
 et al., “Developing the science and technology for the material plasma exposure experiment,”
Nucl. Fusion
(submitted).
25.
COMSOL AB
, “
COMSOL Multiphysics v. 5.2
,” Stockholm, Sweden, www.comsol.com.
26.
V. Kh.
Alimov
,
B.
Tyburska-Püschel
,
S.
Lindig
,
Y.
Hatano
,
M.
Balden
,
J.
Roth
,
K.
Isobe
,
M.
Matsuyama
, and
T.
Yamanishial
,
J. Nucl. Mater.
420
,
519
(
2012
).
27.
M. J.
Baldwin
and
R. P.
Doerner
,
Nucl. Fusion
48
,
035001
(
2008
).
28.
S.
Cui
,
M.
Simmonds
,
W.
Qin
,
F.
Ren
,
G. R.
Tynan
,
R. P.
Doerner
, and
R.
Chen
,
J. Nucl. Mater.
486
,
267
(
2017
).
You do not currently have access to this content.