Molybdenum carbonitride films were deposited using plasma enhanced atomic layer deposition techniques with (tBuN)2(NMe2)2Mo at temperatures ranging from 80 to 300 °C. The elemental composition of the molybdenum carbonitride films were analyzed using x-ray photoelectron spectroscopy with a MoCxNy composition extending from carbide, MoC0.45N0.08 to nitride MoC0.06N1.40 (x: 0.06–0.45; y: 0.08–1.40). The film composition, electrical properties, and optical properties are strongly dependent upon the % N2 in H2 of the plasma gas stream, as well as the process temperature. The molybdenum carbide film (MoC0.45N0.08) deposited at 150 °C achieved an electrical resistivity (ρ) value of 170 μΩ cm and exhibited superconducting behavior with a transition temperature (Tc) of 8.8 K. Nitrogen rich molybdenum carbonitride films (MoC0.28N0.44) deposited at 250 °C with 6% N2 in the plasma gas showed a microcrystalline fine grained structure with a measured ρ = 200 μΩ cm. Film thickness and optical properties were characterized using spectroscopic ellipsometry with a measured growth per cycle extending from 0.36 to 0.56 Å/cycle. The measured optical properties extend across a broad range; refractive index (n: 3.1–3.4), and dielectric constant (k: 1.5–3.18). Grazing incidence x-ray diffraction of the MoCxNy films indicate a fine grained crystal structure, with a transition from a cubic MoC1−x phase for the carbide to a face center cubic γ-Mo2N1±x phase for the nitride films.

1.
Y.
Wang
and
R.
Lin
,
Mater. Sci. Eng., B
112
,
42
(
2004
).
2.
I.
Jauberteau
,
A.
Bessaudou
,
R.
Mayet
,
J.
Cornette
,
J. L.
Jauberteau
,
P.
Carles
, and
T.
Merle-Mejean
,
Coatings
5
,
656
(
2015
).
3.
P.
Alen
,
M.
Ritala
,
K.
Arstila
,
J.
Keinonen
, and
M.
Leskela
,
J. Electrochem. Soc.
152
,
G361
(
2005
).
4.
D. K.
Nandi
,
U. K.
Sen
,
D.
Choudhury
,
S.
Mitra
, and
S. K.
Sarkar
,
ACS Appl. Mater. Interfaces
6
,
6606
(
2014
).
5.
V.
Miikkulainen
,
M.
Suvanto
, and
T. A.
Pakkanen
,
Chem. Mater.
19
,
263
(
2007
).
6.
Y.
Jang
,
J. B.
Kim
,
T. E.
Hong
, and
S.
Kim
,
J. Alloy Compd.
663
,
651
(
2015
).
7.
G.
De Temmerman
,
M.
Ley
,
J.
Boudaden
, and
P.
Oelhafen
,
J. Nucl. Mater.
337–339
,
956
(
2005
).
8.
J.
Lu
,
H.
Hugosson
,
O.
Eriksson
,
L.
Nordstrom
, and
U.
Jansson
,
Thin Solid Films
370
,
203
(
2000
).
9.
H.-T.
Chiu
,
W.-Y.
Ho
, and
S.-H.
Chuang
,
J. Mater. Res.
9
,
1622
(
1994
).
10.
T.
Nakajima
and
T.
Shirasaki
,
J. Electrochem. Soc.
144
,
2096
(
1997
).
11.
K.
Yamaura
,
Q.
Huang
,
M.
Akaishi
, and
E.
Takayama-Muromachi
,
Phys. Rev. B
74
,
184510
(
2006
).
12.
M. K.
Kolel-Veetil
,
S. B.
Qadri
,
M.
Osofsky
, and
T. M.
Keller
,
Chem. Mater.
17
,
6101
(
2005
).
13.
Z. H.
Wang
,
L.
Di
,
D. Y.
Geng
,
S.
Ma
,
W.
Liu
, and
Z. D.
Zhang
,
Phys. Status Solidi
205
,
2919
(
2008
).
14.
N. S.
Athanasiou
,
Mod. Phys. Lett. B
11
,
939
(
1997
).
15.
J.
Halim
 et al.,
Adv. Funct. Mater.
26
,
3118
(
2016
).
16.
A.
Bertuch
,
G.
Sundaram
,
M.
Saly
,
D.
Moser
, and
R.
Kanjolia
,
J. Vac. Sci. Technol., A
32
,
01A119
(
2014
).
17.
M. F. J.
Vos
,
B.
Macco
,
N. F. W.
Thissen
,
A. A.
Bol
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol., A
34
,
01A103
(
2016
).
18.
S.
Gong
,
H.
Chen
,
W.
Li
, and
B.
Li
,
Appl. Catal. A
279
,
257
(
2005
).
19.
F.
Cardenas-Lizana
,
S.
Gomez-Quero
,
N.
Perret
,
L.
Kiwi-Minsker
, and
M. A.
Keane
,
Catal. Sci. Technol.
1
,
794
(
2011
).
20.
C.
Wan
,
Y.
Regmi
, and
B. M.
Leonard
,
Angew. Chem.
126
,
6525
(
2014
).
21.
K.
Inumaru
,
K.
Baba
, and
S.
Yamanaka
,
Physica B
383
,
84
(
2006
).
22.
L.
Cunha
,
L.
Rebouta
,
F.
Vaz
, and
J. P.
Riviere
,
Vacuum
82
,
1428
(
2008
).
23.
C.
Liu
,
M.
Lin
,
K.
Fang
,
Y.
Meng
, and
Y.
Sun
,
RSC Adv.
4
,
20948
(
2014
).
24.
C. I.
Sathish
 et al.,
J. Solid State Chem.
196
,
579
(
2012
).
You do not currently have access to this content.