This work proposes a new method toward improving dielectric barrier characteristics through low dielectric permittivity (k) amorphous silicon nitride films (SiNx) deposited by plasma enhanced atomic layer deposition (PEALD). The dielectric constants of the atomic layer deposition (ALD) SiNx films were in the range of 4.25–4.71 and were relatively lower than that of SiNx deposited by plasma enhanced chemical vapor deposition (PECVD). The dielectric constants of the PEALD SiNx films were nearly identical to the values for PECVD silicon carbon nitride films (SiCN). Although the ALD SiNx films were low-k, they exhibited similar levels of film stress as PECVD SiNx, and the density of ALD SiNx film was higher than that of PECVD SiCN films. The ability to suppress copper (Cu) diffusion through 10-nm thick SiNx dielectric barriers in silicon dioxide/barrier/Cu/tantalum nitride structures on Si substrates was evaluated via Auger electron spectroscopy analysis. Although PEALD SiNx films possessed low dielectric constants (<5), their barrier property to Cu diffusion was nearly equivalent to that of PECVD SiNx. The PECVD SiCN films also exhibited low dielectric constants but showed weak barrier property. Therefore, the low-k ALD SiNx reported herein could be used as a thin film thickness dielectric barrier layer in future advanced technologies.

1.
S. W.
King
,
ECS J. Solid State Sci. Technol.
4
,
N3029
(
2015
).
2.
M. R.
Baklanov
,
C.
Adelmann
,
L.
Zhao
, and
S. D.
Gendt
,
ECS J. Solid State Sci. Technol.
4
,
Y1
(
2015
).
3.
C.
Wu
,
Y.
Li
,
M. R.
Baklanov
, and
K.
Croes
,
ECS J. Solid State Sci. Technol.
4
,
N3065
(
2015
).
4.
J. P.
Gambino
,
2011 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA)
(
IEEE
,
2011
).
5.
S.
Chen
,
Y.
Wang
,
S.
Hu
,
W.
Lee
,
C.
Chi
, and
Y.
Wang
,
Materials
5
,
377
(
2012
).
6.
C. W.
Chen
,
P. T.
Liu
,
T. C.
Chang
,
J. H.
Yang
,
T. M.
Tsai
,
H. H.
Wu
, and
T. Y.
Tseng
,
Thin Solid Films
469
,
388
(
2004
).
7.
L. Y.
Yang
,
D. H.
Zhang
,
C. Y.
Li
,
R.
Liu
,
P. W.
Lu
,
P. D.
Foo
, and
A. T. S.
Wee
,
Thin Solid Films
504
,
265
(
2006
).
8.
E.
Ermakova
,
K.
Mogilnikov
,
Yu.
Rumyantsev
,
V.
Kichay
,
E.
maximovskii
,
O.
Semenova
, and
M.
Kosinova
,
Thin Solid Films
588
,
39
(
2015
).
9.
N. I.
Fainer
,
A. G.
Plekhanov
,
A. N.
Golubenko
,
Yu. M.
Rumyantsev
,
V. I.
Rakhlin
,
E. A.
Maximovski
, and
V. R.
Shayapov
,
ECS J. Solid State Sci. Technol.
4
,
N3153
(
2015
).
10.
T. C.
Wang
,
Y. L.
Cheng
,
Y. L.
Wang
,
T. E.
Hsieh
,
G. J.
Hwang
, and
C. F.
Chen
,
Thin Solid Films
498
,
36
(
2006
).
11.
E.
Van Besien
,
A.
Singh
,
Y.
Barbarin
,
P.
Verdonck
,
H.
Dekkers
,
K.
Vanstreels
,
J.
de Marneffe
,
M.
Baklanov
, and
S.
Van Elshocht
,
Microelectron. Eng.
120
,
221
(
2014
).
12.
Y.
Shioya
,
T.
Ishimaru
,
H.
Ikakura
,
Y.
Nishimoto
,
T.
Ohdaira
,
R.
Suzuki
, and
K.
Maeda
,
J. Electrochem. Soc.
151
,
C56
(
2004
).
13.
H.
Shimizu
,
S.
Nagano
,
A.
Uedono
,
N.
Tajima
,
T.
Momose
, and
Y.
Shimogaki
,
Sci. Technol. Adv. Mater.
14
,
055005
(
2013
).
14.
B. Y.
Tsui
,
K. L.
Fang
, and
S. D.
Lee
,
IEEE Trans. Electron Devices
48
,
2375
(
2001
).
15.
H.
Shimizu
,
N.
Tajima
,
T.
Kada
,
S.
Nagano
, and
Y.
Shimogaki
,
Jpn. J. Appl. Phys., Part 1
50
,
08KA01
(
2011
).
16.
Y. B.
Park
and
S. W.
Rhee
,
J. Mater. Sci. Mater. Electron.
12
,
515
(
2001
).
17.
R. A.
Ovanesyan
,
D. M.
Hausmann
, and
S.
Agarwal
,
ACS Appl. Mater. Interfaces
7
,
10806
(
2015
).
18.
J. G.
Yun
,
H.
Park
,
S.
Cho
,
J. H.
Lee
,
D. H.
Kim
,
G. S.
Lee
,
Y.
Kim
,
J. D.
Lee
, and
B. G.
Park
,
J. Korean Phys. Soc.
51
,
S229
(
2007
).
19.
H.
Sato
,
A.
Izumi
,
A.
Masuda
, and
H.
Matsumura
,
Thin Solid Films
395
,
280
(
2001
).
20.
M.
Tanaka
,
S.
Saida
, and
Y.
Tsunashima
,
J. Electrochem. Soc.
147
,
2284
(
2000
).
21.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
22.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
23.
Z.
Song
,
S. P.
Neo
,
C. K.
Oh
,
S.
Redkar
, and
Y. P.
Lee
,
IEEE Trans. Device Mater. Res.
5
,
206
(
2005
).
24.
L.
Bo
,
Y.
Jijun
,
J.
Guohua
, and
X.
Kewei
,
Plasma Sci. Technol.
14
,
619
(
2012
).
25.
S.
Chhun
 et al.,
Microelectronic Eng.
76
,
106
(
2004
).
26.
T.
Suntola
and
D. T. J.
Hurle
,
Handbook of Crystal Growth, Thin films and Epitaxy
(
Elsevier
,
Amsterdam
,
1994
).
27.
C. A.
Davis
,
Thin Solid Films
226
,
30
(
1993
).
28.
S. W.
King
 et al.,
ECS J. Solid State Sci. Technol.
1
,
N115
(
2012
).
29.
Q.
Wu
and
K. K.
Gleason
,
J. Vac. Sci. Technol., A
21
,
388
(
2003
).
30.
M. L.
O'Neill
,
R. N.
Vrtis
,
J. L.
Vincent
,
A. S.
Lukas
,
E. J.
Karwacki
,
B. K.
Peterson
, and
M. D.
Bitner
,
MRS Proceedings
(
Cambridge University
,
2003
), Vol. 766.
31.
R.
Kärcher
,
L.
Ley
, and
R. L.
Johnson
,
Phys. Rev. B
30
,
1896
(
1984
).
32.
G. M.
Ingo
,
N.
Zacchetti
,
D.
Della Sala
, and
C.
Coluzza
,
J. Vac. Sci. Technol., A
7
,
3048
(
1989
).
33.
E.
Dehan
,
P.
Temple-Boyer
,
R.
Henda
,
J. J.
Pedroviejo
, and
E.
Scheid
,
Thin Solid Films
266
,
14
(
1995
).
34.
E. C.
Samano
,
R.
Machorro
,
G.
Soto
, and
L.
Cota-Araiza
,
J. Appl. Phys.
84
,
5296
(
1998
).
35.
L.
Yang
,
B.
Abeles
,
W.
Eberhardt
,
D.
Sondericker
,
H.
Stasiewski
, and
Z.
Fu
,
J. Non-Cryst. Solids
97
,
851
(
1987
).
You do not currently have access to this content.