LaB6 thin films were deposited at a temperature of 500 °C under vacuum or Ar atmosphere by the pulsed laser deposition technique on (100) Si substrates using a KrF laser. Grazing incidence x-ray diffraction investigations found that films were nanocrystalline, with grain size dimensions from 86 to 102 nm and exhibited microstrain values around 1.1%. Simulations of the x-ray reflectivity curves acquired from the deposited films showed that films had a density around 4.55 g/cm3, and were very smooth, with a surface roughness root-mean-square of 1.5 nm, which was also confirmed by scanning electron and atomic force microscopy measurements. All films were covered by a ∼2 nm thick contamination layer that formed when samples were exposed to the ambient. Auger electron spectroscopy investigations found very low oxygen impurity levels below 1.5 at. % once the contamination surface layer was removed by Ar ion sputtering. Four point probe measurements showed that films were conductive, with a resistivity value around 200 μΩ cm for those deposited under Ar atmosphere and slightly higher for those deposited under vacuum. Nanoindentation and scratch investigations showed that films were rather hard, H ∼ 16 GPa, E ∼ 165 GPa, and adherent to the substrate. Thermionic emission measurements indicated a work function value of 2.66 eV, very similar to other reported values for LaB6.

1.
M.
Bakr
 et al,
J. Korean Phys. Soc.
59
,
3273
(
2011
).
2.
J. K.
Sonber
,
K.
Sairam
,
T. S. R. Ch.
Murthy
,
A.
Nagaraj
,
C.
Subramanian
, and
R. C.
Hubli
,
J. Eur. Ceram. Soc.
34
,
1155
(
2014
).
3.
Y.
Wu
,
G. H.
Minn
,
D. F.
Chen
,
L.
Zhangnn
, and
H. S.
Yu
,
Ceram. Int.
41
,
1005
(
2015
).
4.
J.
Voss
,
A.
Vojvodic
,
S. H.
Chou
,
R. T.
Howe
, and
F.
Abild-Pedersen
,
Phys. Rev. Appl.
2
,
024004
(
2014
).
5.
C. M.
Zimmer
,
M.
Kieschnick
,
K. T.
Kallis
,
J.
Schubert
,
U.
Kunze
, and
T.
Doll
,
Microelectron. Eng.
98
,
472
(
2012
).
6.
L. J.
Hu
,
L.
Zhang
,
J.
Lin
, and
G. H.
Min
,
Sensors, Measurement and Intelligent Materials
, PTS 1-4, edited by
Y. H.
Klm
and
P.
Yarlagadda
(
Trans Tech Publications LTD
,
Switzerland
2013
)
L. J.
Hu
,
L.
Zhang
,
J.
Lin
, and
G. H.
Min
; [
Appl. Mech. Mater.
303–306
,
2514
(
2013
)].
7.
J. A.
Bares
,
N.
Argibay
,
N.
Mauntler
,
G. J.
Dudder
,
S. S.
Perry
,
G. R.
Bourne
, and
W. G.
Sawyer
,
Wear
267
,
417
(
2009
).
8.
J.
Xu
,
G. H.
Min
,
L. J.
Hu
,
X. H.
Zhao
, and
H. S.
Yu
,
Trans. Nonferrous Met. Soc. China
19
,
952
(
2009
).
9.
H.
Ishii
,
K.
Takahashi
,
T.
Goto
,
S.
Sugawa
, and
T.
Ohmi
,
ECS Trans.
66
,
23
(
2015
).
10.
S. S.
Kher
and
J. T. J.
Spencer
,
Phys. Chem. Solids
59
,
1343
(
1998
).
11.
Y.
Kato
 et al,
J. Cryst. Growth
330
,
39
(
2011
).
12.
D. J.
Late
,
M. A.
More
,
S.
Sinha
,
K.
Dasgupta
,
P.
Misra
,
B. N.
Singh
,
L. M.
Kukreja
,
S. V.
Bhoraskar
, and
D. S.
Joag
,
Appl. Phys. A–Mater.
104
,
677
(
2011
).
13.
V.
Craciun
and
D.
Craciun
,
Appl. Surf. Sci.
247
,
384
(
2005
).
14.
L.
Liu
,
Y. M.
Yiu
,
T. K.
Sham
,
D.
Yang
, and
L.
Zuin
,
J. Appl. Phys.
107
,
043703
(
2010
).
15.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
16.
JCPDS Card No: 06-0401;
M. F.
Zhang
,
L.
Yuanb
,
X. Q.
Wang
,
H.
Fan
,
X. Y.
Wang
,
X. Y.
Wu
,
H. Z.
Wang
, and
Y. T.
Qian
,
J. Solid State Chem.
181
,
294
(
2008
).
17.
D.
Mandrus
,
B. C.
Sales
, and
R.
Jin
,
Phys. Rev. B
64
012302
(
2001
).
18.
R.
Patra
 et al,
J. Appl. Phys.
116
,
164309
(
2014
).
19.
X. M.
Liu
,
F. P.
Yuan
, and
Y. G.
Wei
,
Appl. Surf. Sci.
279
,
159
(
2013
).
20.
J.
Schiotz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
21.
Z.
Cao
,
P. Y.
Li
,
H. M.
Lu
,
Y. L.
Huang
, and
X. K.
Meng
,
J. Phys. D: Appl. Phys.
42
,
065405
(
2009
).
22.
J. B.
Jeon
,
B. J.
Lee
, and
Y. W.
Chang
,
Scr. Mater.
64
,
494
(
2011
).
23.
S. J.
Bull
,
Surf. Coat. Technol.
50
,
25
(
1991
).
24.
S.
Dushman
,
Rev. Mod. Phys.
2
,
0381
(
1930
).
25.
A.
Yutani
,
A.
Kobayashi
, and
A.
Kinbara
,
Appl. Surf. Sci.
70–71
,
737
(
1993
).
26.
E. K.
Storms
and
B. A.
Mueller
,
J. Appl. Phys.
50
,
3691
(
1979
).
You do not currently have access to this content.