The donor efficiencies of Eu3+ ions and hydrogen atoms in ZnO crystalline films were investigated with reference to that of Ga3+ ions. It was found that Eu3+ ions acted as extrinsic donors in ZnO:Eu films, yielding a resistivity of 1.8 × 10−3 Ω cm at a doping level of 1 at. %. This value is comparable to one for intrinsic donors in undoped ZnO films. The conductivity was maintained as the deposition temperature was increased to 200 °C, and this is evidence for the contribution of extrinsic donors. Deposition of Ga-doped and Eu-doped ZnO films in an H2O gas flow produced oxyhydrogenated ZnO:(Ga, H) and ZnO:(Eu, H) films in which the Ga3+ and Eu3+ donors were deactivated by oxidization. Nevertheless, hydrogen donors contributed to electrical conduction yielding a resistivity of 1 × 10−2 Ω cm. Postannealing in an H2 gas ambient alleviated the excessive oxidization of the films and thereby reactivated the donor action of Ga3+ and Eu3+ ions, causing the resistivity to recover to 10−3 Ω cm for ZnO:(Ga, H) and 10−2 Ω cm for ZnO:(Eu, H). In contrast, vacuum annealing of ZnO:(Ga, H) and ZnO:(Eu, H) films increased resistivity through removal of hydrogen donors while not affecting the oxidized condition of the samples.

1.
H.
Sato
,
T.
Minami
, and
S.
Takata
,
J. Vac. Sci. Technol., A
11
,
2975
(
1993
).
2.
P. J.
Kelly
and
Y.
Zhou
,
J. Vac. Sci. Technol., A
24
,
1782
(
2006
).
3.
T.
Minami
,
Semicond. Sci. Technol.
20
,
S35
(
2005
).
4.
A.
Suzuki
,
T.
Matsushita
,
N.
Wada
,
Y.
Sakamoto
, and
M.
Okuda
,
Jpn. J. Appl. Phys., Part 2
35
,
L56
(
1996
).
5.
A. V.
Singh
,
R. M.
Mehra
,
N.
Buthrath
,
A.
Wakahara
, and
A.
Yoshida
,
J. Appl. Phys.
90
,
5661
(
2001
).
6.
H.
Agura
,
A.
Suzuki
,
T.
Matsushita
,
T.
Aoki
, and
M.
Okuda
,
Thin Solid Films
445
,
263
(
2003
).
7.
A.
Suzuki
,
T.
Matsushita
,
Y.
Sakamoto
,
N.
Wada
,
T.
Fukuda
,
H.
Fujiwara
, and
M.
Okuda
,
Jpn. J. Appl. Phys., Part 1
35
,
5457
(
1996
).
8.
Y.
Li
,
G. S.
Tompa
,
S.
Liang
,
C.
Gorla
,
Y.
Lu
, and
J.
Doyle
,
J. Vac. Sci. Technol., A
15
,
1063
(
1997
).
9.
T.
Minami
,
S.
Ida
, and
T.
Miyata
,
Thin Solid Films
416
,
92
(
2002
).
10.
T.
Yamada
,
T.
Nebiki
,
S.
Kishimoto
,
H.
Makino
,
K.
Awai
,
T.
Narusawa
, and
T.
Yamamoto
,
Superlattices Microstruct.
42
,
68
(
2007
).
11.
K.
Tominaga
,
N.
Umezu
,
I.
Mori
,
T.
Ushiro
,
T.
Moriga
, and
I.
Nakabayashi
,
J. Vac. Sci. Technol., A
16
,
1213
(
1998
).
12.
T.
Minami
,
S.
Ida
,
T.
Miyata
, and
Y.
Minamino
,
Thin Solid Films
445
,
268
(
2003
).
13.
W. W.
Wenas
,
A.
Yamada
,
K.
Takahashi
,
M.
Yoshino
, and
M.
Konagai
,
J. Appl. Phys.
70
,
7119
(
1991
).
14.
X. L.
Chen
,
X. H.
Geng
,
J. M.
Xue
,
D. K.
Zhang
,
G. F.
Hou
, and
Y.
Zhao
,
J. Cryst. Growth
296
,
43
(
2006
).
15.
T.
Miyata
,
Y.
Honma
, and
T.
Minami
,
J. Vac. Sci. Technol., A
25
,
1193
(
2007
).
16.
J. Y.
Lee
,
Y. S.
Choi
,
J. H.
Kim
,
M. O.
Park
, and
S.
Im
,
Thin Solid Films
403–404
,
553
(
2002
).
17.
J. D.
Ye
,
S. L.
Gu
,
S. M.
Zhu
,
W.
Liu
,
S. M.
Liu
,
R.
Zhang
,
Y.
Shi
, and
Y. D.
Yang
,
Appl. Phys. Lett.
88
,
182112
(
2006
).
18.
P.
Chen
,
X.
Ma
, and
D.
Yang
,
J. Appl. Phys.
101
,
053103
(
2007
).
19.
E. F.
Pecora
,
T. I.
Murphy
, and
L. D.
Negro
,
Appl. Phys. Lett.
101
,
191115
(
2012
).
20.
S.
Iwan
,
S.
Bambang
,
J. L.
Zhao
,
S. T.
Tan
,
H. M.
Fan
,
L.
Sun
,
S.
Zhang
,
H. H.
Ryu
, and
X. W.
Sun
,
Physica B
407
,
2721
(
2012
).
21.
Y.
Yang
,
Y.
Li
,
L.
Xiang
,
X.
Ma
, and
D.
Yang
,
Appl. Phys. Lett.
102
,
181111
(
2013
).
22.
S. A. M.
Lima
,
M. R.
Davolos
,
W. G.
Quirino
,
C.
Legnani
, and
M.
Cremona
,
Appl. Phys. Lett.
90
,
023503
(
2007
).
23.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
24.
M. G.
Wardle
,
J. P.
Goss
, and
P. R.
Briddon
,
Phys. Rev. Lett.
96
,
205504
(
2006
).
25.
J.
Bang
and
K. J.
Chang
,
Appl. Phys. Lett.
92
,
132109
(
2008
).
26.
P. K.
Song
,
M.
Watanabe
,
M.
Kon
,
A.
Mitsui
, and
Y.
Shigesato
,
Thin Solid Films
411
,
82
(
2002
).
27.
T.
Minami
,
Y.
Ohtani
,
T.
Miyata
, and
T.
Kuboi
,
J. Vac. Sci. Technol., A
25
,
1172
(
2007
).
28.
L.-Y.
Chen
,
W.-H.
Chen
,
J.-J.
Wang
,
F. C.-N.
Hong
, and
Y.-K.
Su
,
Appl. Phys. Lett.
85
,
5628
(
2004
).
29.
S.
Kohiki
,
M.
Nishitani
,
T.
Wada
, and
T.
Hirao
,
Appl. Phys. Lett.
64
,
2876
(
1994
).
30.
S. J.
Baik
,
J. H.
Jang
,
C. H.
Lee
,
W. Y.
Cho
, and
K. S.
Lim
,
Appl. Phys. Lett.
70
,
3516
(
1997
).
31.
A. Y.
Polyakov
 et al,
J. Appl. Phys.
94
,
400
(
2003
).
32.
Y. M.
Strzhemechny
,
J.
Nemergut
,
P. E.
Smith
,
J.
Bae
,
D. C.
Look
, and
L. J.
Brillson
,
J. Appl. Phys.
94
,
4256
(
2003
).
33.
H.
Akazawa
,
J. Vac. Sci. Technol., A
28
,
314
(
2010
).
34.
H.
Akazawa
and
H.
Shinojima
,
J. Appl. Phys.
114
,
153502
(
2013
).
35.
H.
Akazawa
,
J. Vac. Sci. Technol., A
32
,
021503
(
2014
).
36.
H.
Akazawa
,
Thin Solid Films
520
,
2418
(
2012
).
37.
T.
Aoi
,
N.
Oka
,
Y.
Sato
,
R.
Hayashi
,
H.
Kumomi
, and
Y.
Shigesato
,
Thin Solid Films
518
,
3004
(
2010
).
38.
H.
Akazawa
,
J. Vac. Sci. Technol., A
32
,
051511
(
2014
).
39.
K.
Ip
 et al,
Appl. Phys. Lett.
82
,
385
(
2003
).
40.
A.
Zakutayev
,
N. H.
Perry
,
T. O.
Mason
,
D. G.
Ginley
, and
S.
Lany
,
Appl. Phys. Lett.
103
,
232106
(
2013
).
41.
N.
Oka
,
T.
Aoi
,
Y.
Sato
,
R.
Hayashi
,
H.
Kumomi
, and
Y.
Shigesato
,
Appl. Phys. Express
5
,
075802
(
2012
).
42.
J.-S.
Park
,
J. K.
Jeong
,
H.-J.
Chung
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
92
,
072104
(
2008
).
You do not currently have access to this content.