The electron density, ne, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C4F8 (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state ne is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas ne increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of ne monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the ne overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the ne at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of ne increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state ne shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

1.
E.
Kawamura
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
Phys. Plasmas
13
,
053506
(
2006
).
2.
H.
Goto
,
H.
Lowe
, and
T.
Ohmi
,
J. Vac. Sci. Technol., A
10
,
3048
(
1992
).
3.
J.
Hopwood
,
Plasma Sources Sci. Technol.
1
,
109
(
1992
).
4.
P. L. G.
Ventzek
,
R. J.
Hoekstra
, and
M. J.
Kushner
,
J. Vac. Sci. Technol., B
12
,
461
(
1994
).
5.
D. B.
Graves
,
IEEE Trans. Plasma Science
22
,
31
(
1994
).
6.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
697
(
2004
).
7.
S. K.
Karkari
and
A. R.
Ellingboe
,
Appl. Phys. Lett.
88
,
101501
(
2006
).
8.
T.
Gans
,
J.
Schulze
,
D.
O'Connell
,
U.
Czarnetzki
,
R.
Faulkner
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Appl. Phys. Lett.
89
,
261502
(
2006
).
9.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
10.
V.
Vahedi
,
C. K.
Birdsall
,
M. A.
Lieberman
,
G.
DiPeso
, and
T. D.
Rognlien
,
Phys. Fluids B
5
,
2719
(
1993
).
11.
M. J.
Colgan
,
M.
Meyyappan
, and
D. E.
Murnick
,
Plasma Sources Sci. Technol.
3
,
181
(
1994
).
12.
W.
Schwarzenbach
,
A. A.
Howling
,
M.
Fivaz
,
S.
Brunner
, and
C. H.
Hollenstein
,
J. Vac. Sci. Technol., A
14
,
132
(
1996
).
13.
T.
Katajima
,
Y.
Takeo
,
N.
Nakano
, and
T.
Makabe
,
J. Appl. Phys.
84
,
5928
(
1998
).
14.
M. A.
Lieberman
,
J. P.
Booth
,
P.
Chabert
,
J. M.
Rax
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
11
,
283
(
2002
).
15.
A.
Perret
,
J. P.
Booth
,
P.
Chabert
,
J.
Jolly
,
J.
Guillon
, and
Ph.
Auvray
,
Appl. Phys. Lett.
83
,
243
(
2003
).
16.
A. R.
Ellingboe
, U.S. patent 7,342,361 (11 March 2008).
17.
A. R.
Ellingboe
,
D.
O'Farrell
,
C.
Gaman
,
F.
Green
,
N.
O'Hara
, and
T.
Michna
,
62nd Gaseous Electronic Conference
,
Saratoga Springs, NY
(
2009
).
18.
K.
Ryan
and
A. R.
Ellingboe
,
37th European Physical Society Conference on Plasma Physics
,
Dublin, Ireland
(
2010
).
19.
E.
Monaghan
 et al,
Thin Solid Films
519
,
6884
(
2011
).
20.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University
,
Cambridge
,
2011
).
21.
T.
Okumura
,
Phys. Res. Int.
2010
,
164249
.
22.
K. N.
Kim
,
J. H.
Lim
,
G. Y.
Yeom
,
S. H.
Lee
, and
J. K.
Lee
,
Appl. Phys. Lett.
89
,
251501
(
2006
).
23.
A.
Mishra
,
K. N.
Kim
,
T. H.
Kim
, and
G. Y.
Yeom
,
Plasma Sources Sci. Technol.
21
,
035018
(
2012
).
24.
T. H.
Kim
,
K. N.
Kim
,
A.
Mishra
,
J. S.
Seo
,
H. B.
Jeong
,
J. O.
Bae
, and
G. Y.
Yeom
,
Jpn. J. Appl. Phys., Part 1
52
,
05EA02
(
2013
).
25.
A.
Mishra
,
T. H.
Kim
,
K. N.
Kim
, and
G. Y.
Yeom
,
Plasma Sources Sci. Technol.
22
,
015022
(
2013
).
26.
A.
Mishra
,
T. H.
Kim
,
K. N.
Kim
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
45
,
475201
(
2012
).
27.
S.
Banna
,
A.
Agarwal
,
G.
Cunge
,
M.
Darnon
,
E.
Pargon
, and
O.
Joubert
,
J. Vac. Sci. Technol., A
30
,
040801
(
2012
).
28.
D. J.
Economou
,
J. Phys. D: Appl. Phys.
47
,
303001
(
2014
).
29.
S.
Ashida
,
M. R.
Shim
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol., A
14
,
391
(
1996
).
30.
S.
Samukawa
and
S.
Furuoya
,
Appl. Phys. Lett.
63
,
2044
(
1993
).
31.
A.
Mishra
,
J. S.
Seo
,
K. N.
Kim
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
46
,
235203
(
2013
).
32.
A.
Mishra
,
S.
Lee
, and
G. Y.
Yeom
,
J. Vac. Sci. Technol., A
32
,
061303
(
2014
).
33.
J. S.
Seo
,
K. N.
Kim
,
K. S.
Kim
,
T. H.
Kim
, and
G. Y.
Yeom
,
Jpn. J. Appl. Phys., Part 1
54
,
01AA10
(
2015
).
34.
S. K.
Karkari
,
A. R.
Ellingboe
,
C.
Gaman
,
I.
Swindells
, and
J. W.
Bradley
,
J. Appl. Phys.
102
,
063308
(
2007
).
35.
S. K.
Karkari
,
C.
Gaman
,
A. R.
Ellingboe
,
I.
Swindells
, and
J. W.
Bradley
,
Meas. Sci. Technol.
18
,
2649
(
2007
).
36.
R. B.
Piejak
,
V. A.
Godyak
,
R.
Garner
,
B. M.
Alexandrovich
, and
N.
Sternberg
,
J. Appl. Phys.
95
,
3785
(
2004
).
37.
G. A.
Curley
,
L.
Gatilova
,
S.
Guilet
,
S.
Bouchoule
,
G. S.
Gogna
,
N.
Sirse
,
S. K.
Karkari
, and
J. P.
Booth
,
J. Vac. Sci. Technol., A
28
,
360
(
2010
).
38.
S. K.
Karkari
,
A. R.
Ellingboe
, and
C.
Gaman
,
Appl. Phys. Lett.
93
,
071501
(
2008
).
39.
N.
Sirse
,
M. H.
Jeon
,
G. Y.
Yeom
, and
A. R.
Ellingboe
,
Plasma Sources Sci. Technol.
23
,
065046
(
2014
).
40.
M. V.
Malyshev
and
V. M.
Donnelly
,
Plasma Sources Sci. Technol.
9
,
353
(
2000
).
41.
M. A.
Lieberman
and
S.
Ashida
,
Plasma Sources Sci. Technol.
5
,
145
(
1996
).
42.
C.
Gaman
, Ph.D. thesis (
Dublin City University, Ireland
,
2011
).
43.
J.
Liu
,
Y. X.
Liu
,
Z. H.
Bi
,
F.
Gao
, and
Y. N.
Wang
,
J. Appl. Phys.
115
,
013301
(
2014
).
44.
N.
Sirse
,
J. P.
Booth
,
P.
Chabert
,
A.
Surzhykov
, and
P.
Indelicato
,
J. Phys. D: Appl. Phys.
46
,
295203
(
2013
).
45.
S.
Kim
,
M. A.
Lieberman
,
A. J.
Lichtenberg
, and
J. T.
Gundmundsson
,
J. Vac. Sci. Technol., A
24
,
2025
(
2006
).
46.
A.
Kono
and
K.
Kato
,
Appl. Phys. Lett.
77
,
495
(
2000
).
47.
M.
Shindo
,
Y.
Ueda
,
S.
Kawakami
,
N.
Ishii
, and
Y.
Kawai
,
Vacuum
59
,
708
(
2000
).
48.
G. A.
Hebner
and
I.
Abraham
,
J. Appl. Phys.
90
,
4929
(
2001
).
49.
N.
Sirse
,
J. P.
Booth
,
Y.
Azamoum
, and
P.
Chabert
,
30th International Conference on Phenomena in Ionized Gases (ICPIG)
,
UK
(
2011
), pp.
D13
292
, available at http://mpserver.pst.qub.ac.uk/sites/icpig2011/292_D13_Sirse.pdf.
50.
G.
Curley
, Ph.D. thesis (
Ecole Polytechnique, France
,
2008
).
51.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
1994
).
52.
A. V.
Vasenkov
,
X.
Li
,
G. S.
Oehrlein
, and
M. J.
Kushner
,
J. Vac. Sci. Technol., A
22
,
511
(
2004
).
53.
M.
Shimada
,
G. R.
Tynan
, and
R.
Cattolica
,
Plasma Sources Sci. Technol.
16
,
193
(
2007
).
54.
N.
Sirse
,
Q.
Delivre
,
J. P.
Booth
, and
P.
Chabert
,
IEEE International Conference on Plasma Science
(ICOPS) (
2012
), p.
3P
135
, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6383920&tag=1.
55.
G. A.
Hebner
and
C. B.
Fleddermann
,
J. Appl. Phys.
82
,
2814
(
1997
).
56.
A.
Agarwal
,
P. J.
Stout
,
S.
Banna
,
S.
Rauf
,
K.
Tokashiki
,
J. Y.
Lee
, and
K.
Collins
,
J. Appl. Phys.
106
,
103305
(
2009
).
You do not currently have access to this content.