Fabrication of industrial thin-film crystalline silicon solar cells remains challenging because of the high level of light trapping and surface passivation required to achieve a good conversion efficiency, while reducing the process cost. This work proposes a solution of rear side reflector supplying both passivation and light trapping, and guaranteeing compatibility with a laser process for local opening in order to use the passivated emitter and rear cell architecture. The key element is the use of substoichiometric silicon oxide deposited by plasma-enhanced chemical vapor deposition with a higher silicon concentration than the usual nearly stoichiometric oxide. This material is absorbent at usual ultraviolet laser wavelengths, and thus allows laser ablation with limited substrate heat, greatly reducing substrate damage after ablation. A layer of this oxide is incorporated into a SiOx/SiNy dielectric stack, which shows the expected qualities in term of passivation and reflectivity.

1.
“International Technology Roadmap for Photovoltaic
,” 7th ed., www.itrpv.net,
2016
.
2.
M. M.
Moslehi
 et al.,
PV Asia Pacific Conference (APVIA/PVAP)
(
2012
), Vol.
24
.
3.
J. H.
Petermann
,
D.
Zielke
,
J.
Schmidt
,
F.
Haase
,
E. G.
Rojas
, and
R.
Brendel
,
Prog. Photovoltaics
20
,
1
(
2012
).
5.
P.
Kowalczewski
and
L. C.
Andreani
,
Sol. Energy Mater. Sol. Cells
143
,
260
(
2015
).
6.
D.
Kray
,
M.
Hermle
, and
S. W.
Glunz
,
Prog. Photovoltaics
16
,
1
(
2008
).
7.
M.
Grau
,
D.
Blangis
,
S.
Lindekugel
,
S.
Janz
,
S.
Reber
, and
A.
Straboni
,
Proceedings of the 24th European Photovoltaic Solar Energy Conference
, Hamburg (
2009
).
8.
G.
Dingemans
,
M. M.
Mandoc
,
S.
Bordihn
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
98
,
222102
(
2011
).
9.
P.
Engelhart
 et al.,
Prog. Photovoltaics
15
,
521
(
2007
).
10.
T.
Rublack
,
M.
Schade
,
M.
Muchow
,
H. S.
Leipner
, and
G.
Seifert
,
J. Appl. Phys.
112
,
023521
(
2012
).
11.
Z. R.
Du
,
N.
Palina
,
J.
Chen
,
A. G.
Aberle
,
B.
Hoex
, and
M. H.
Hong
,
Opt. Express
20
,
A984
(
2012
).
12.
D.
Walter
,
A.
Fell
,
E.
Franklin
,
D.
Wang
,
K.
Fong
,
T.
Kho
,
K.
Weber
, and
A. W.
Blakers
,
Sol. Energy Mater. Sol. Cells
136
,
1
(
2015
).
13.
J.-F.
Lelièvre
,
E.
Fourmond
,
A.
Kaminski
,
O.
Palais
,
D.
Ballutaud
, and
M.
Lemiti
,
Sol. Energy Mater. Sol. Cells
93
,
1281
(
2009
).
14.
M. I.
Alayo
,
I.
Pereyra
,
W. L.
Scopel
, and
M. C. A.
Fantini
,
Thin Solid Films
402
,
154
(
2002
).
15.
J.
Dupuis
,
E.
Fourmond
,
D.
Ballutaud
,
N.
Bererd
, and
M.
Lemiti
,
Thin Solid Films
519
,
1325
(
2010
).
16.
S. A. G. D.
Correia
,
J.
Lossen
,
M.
Wald
,
K.
Neckermann
, and
M.
Bähr
,
Proceedings of 22nd European Photovoltaic Solar Energy Conference
, Milan (
2007
).
17.
G.
Poulain
,
D.
Blanc
,
A.
Focsa
,
M.
De Vita
,
K.
Fraser
,
Y.
Sayad
, and
M.
Lemiti
,
Mater. Sci. Eng., B
178
,
682
(
2013
).
18.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
Hoboken, NJ
,
2006
).
19.
A. B.
Sproul
,
J. Appl. Phys.
76
,
2851
(
1994
).
20.
D. L.
Windt
,
Comput. Phys.
12
,
360
(
1998
).
21.
R.
Brendel
,
Thin-Film Crystalline Silicon Solar Cells: Physics and Technology
(
Wiley-VCH
,
Weinheim
,
2003
).
22.
S.
Duttagupta
,
F.-J.
Ma
,
B.
Hoex
, and
A. G.
Aberle
,
Sol. Energy Mater. Sol. Cells
120
,
204
(
2014
).
You do not currently have access to this content.