Iron(II,III) oxide (Fe3O4) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al2O3 passivation layers on Fe3O4 nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surface reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al2O3 coatings could effectively protect the Fe3O4 nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5 nm-thick Al2O3 passivation layer. This good preservation of the magnetic properties with superior oxidation resistance will be beneficial for practical magnetic-based applications.

1.
J.-K.
Xu
,
F.-F.
Zhang
,
J.-J.
Sun
,
J.
Sheng
,
F.
Wang
, and
M.
Sun
,
Molecules
19
,
21506
(
2014
).
2.
S.-H.
Liao
,
C.-H.
Liu
,
B. P.
Bastakoti
,
N.
Suzuki
,
Y.
Chang
,
Y.
Yamauchi
,
F.-H.
Lin
, and
K. C. W.
Wu
,
Int. J. Nanomed.
10
,
3315
(
2015
).
3.
S.
Rauch
,
K. J.
Eichhorn
,
M.
Stamm
, and
P.
Uhlmann
,
J. Vac. Sci. Technol., A
30
,
041514
(
2012
).
4.
S.
Larumbe
,
C.
Gomez-Polo
,
J. I.
Perez-Landazabal
, and
J. M.
Pastor
,
J. Phys.: Condens. Matter
24
,
266007
(
2012
).
5.
J. G.
Shao
,
X. C.
Xie
,
Y. J.
Xi
,
X. N.
Liu
, and
Y. X.
Yang
,
Glass Phys. Chem.
39
,
329
(
2013
).
6.
H. L.
Ding
,
Y. X.
Zhang
,
S.
Wang
,
J. M.
Xu
,
S. C.
Xu
, and
G. H.
Li
,
Chem. Mater.
24
,
4572
(
2012
).
7.
G.
Dingemans
and
E.
Kessels
,
J. Vac. Sci. Technol., A
30
,
040802
(
2012
).
8.
X. L.
Liu
,
H. M.
Fan
,
J. B.
Yi
,
Y.
Yang
,
E. S. G.
Choo
,
J. M.
Xue
,
D.
Di Fan
, and
J.
Ding
,
J. Mater. Chem.
22
,
8235
(
2012
).
9.
H.-P.
Peng
,
R.-P.
Liang
, and
J.-D.
Qiu
,
Biosens. Bioelectron.
26
,
3005
(
2011
).
10.
F.
Jay
,
V.
Gauthier-Brunet
,
F.
Pailloux
,
J.
Mimault
,
S.
Bucher
, and
S.
Dubois
,
Surf. Coat. Technol.
202
,
4302
(
2008
).
11.
L. F.
Hakim
,
C. L.
Vaughn
,
H. J.
Dunsheath
,
C. S.
Carney
,
X.
Liang
,
P.
Li
, and
A. W.
Weimer
,
Nanotechnology
18
,
345603
(
2007
).
12.
L. F.
Hakim
,
J. H.
Blackson
, and
A. W.
Weimer
,
Chem. Eng. Sci.
62
,
6199
(
2007
).
13.
R.
Blum
and
P.
Molian
,
Surf. Coat. Technol.
204
,
1
(
2009
).
14.
C.
Marichy
,
M.
Bechelany
, and
N.
Pinna
,
Adv. Mater.
24
,
1017
(
2012
).
15.
A.
Goulas
and
J. R.
van Ommen
,
J. Mater. Chem. A
1
,
4647
(
2013
).
16.
I. J.
Hsu
,
J. G. G.
Chen
,
X. Q.
Jiang
, and
B. G.
Willis
,
J. Vac. Sci. Technol., A
33
,
01a129
(
2015
).
17.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
18.
Y.
Xie
,
L.
Ma
,
D.
Pan
, and
C.
Yuan
,
Chem. Eng. J.
259
,
213
(
2015
).
19.
S. M.
George
, U.S. patent 6,913,827 (5 July
2005
);
S. M.
George
, U.S. patent 6,713,177 (30 March
2004
);
S. M.
George
, U.S. patent 6,613,383 (2 September
2003
).
20.
D. M.
King
,
X. H.
Liang
, and
A. W.
Weimer
,
Powder Technol.
221
,
13
(
2012
).
21.
J. L.
Lu
and
P. C.
Stair
,
Angew. Chem. Int. Ed.
49
,
2547
(
2010
).
22.
D.
Longrie
,
D.
Deduytsche
, and
C.
Detavernier
,
J. Vac. Sci. Technol., A
32
,
010802
(
2014
).
23.
J. A.
McCormick
,
B. L.
Cloutier
,
A. W.
Weimer
, and
S. M.
George
,
J. Vac. Sci. Technol., A
25
,
67
(
2007
).
24.
D.
Longrie
,
D.
Deduytsche
,
J.
Haemers
,
K.
Driesen
, and
C.
Detavernier
,
Surf. Coat. Technol.
213
,
183
(
2012
).
25.
L. F.
Hakim
,
S. M.
George
, and
A. W.
Weimer
,
Nanotechnology
16
,
S375
(
2005
).
26.
L. F.
Hakim
,
S. M.
George
, and
A. W.
Weimer
,
Chem. Vap. Deposition
11
,
420
(
2005
).
27.
X. H.
Liang
,
Y. B.
Jiang
, and
A. W.
Weimer
,
J. Vac. Sci. Technol., A
30
,
01A108
(
2012
).
28.
L. F.
Hakim
,
J. A.
McCormick
,
G.-D.
Zhan
,
A. W.
Weimer
,
P.
Li
, and
S. M.
George
,
J. Am. Ceram. Soc.
89
,
3070
(
2006
).
29.
D. M.
King
,
X. H.
Liang
,
Y.
Zhou
,
C. S.
Carney
,
L. F.
Hakim
,
P.
Li
, and
A. W.
Weimer
,
Powder Technol.
183
,
356
(
2008
).
30.
D. M.
King
,
J. A.
Spencer
,
X.
Liang
,
L. F.
Hakim
, and
A. W.
Weimer
,
Surf. Coat. Technol.
201
,
9163
(
2007
).
31.
L. F.
Hakim
,
J. L.
Portman
,
M. D.
Casper
, and
A. W.
Weimer
,
Powder Technol.
160
,
149
(
2005
).
32.
J. R.
van Ommen
,
J. M.
Valverde
, and
R.
Pfeffer
,
J. Nanopart. Res.
14
,
737
(
2012
).
33.
J. Z.
Kovacevic
,
M. N.
Pantzali
,
G. J.
Heynderickx
, and
G. B.
Marin
,
Chem. Eng. Sci.
106
,
293
(
2014
).
34.
R. P.
Ekatpure
,
V. U.
Suryawanshi
,
G. J.
Heynderickx
,
A.
de Broqueville
, and
G. B.
Marin
,
Chem. Eng. Process.
50
,
77
(
2011
).
35.
J.
Quevedo
,
R.
Pfeffer
,
Y. Y.
Shen
,
R.
Dave
,
H.
Nakamura
, and
S.
Watano
,
AICHE J.
52
,
2401
(
2006
).
36.
R. W.
Ashcraft
,
G. J.
Heynderickx
, and
G. B.
Marin
,
Chem. Eng. J.
207
,
195
(
2012
).
37.
M. H.
Shi
,
H.
Wang
, and
Y. L.
Hao
,
Chem. Eng. J.
78
,
107
(
2000
).
38.
C.-L.
Duan
,
X.
Liu
,
B.
Shan
, and
R.
Chen
,
Rev. Sci. Instrum.
86
,
075101
(
2015
).
39.
C. E.
Suarez
,
Light Metals 2012
(
Wiley
,
New Jersey
,
2012
).
40.
F.
Grillo
,
M. T.
Kreutzer
, and
J. R.
van Ommen
,
Chem. Eng. J.
268
,
384
(
2015
).
41.
A. C.
Dillon
,
A. W.
Ott
,
J. D.
Way
, and
S. M.
George
,
Surf. Sci.
322
,
13
(
1995
).
42.
C.
Hui
,
C.
Shen
,
J.
Tian
,
L.
Bao
,
H.
Ding
,
C.
Li
,
Y.
Tian
,
X.
Shi
, and
H.-J.
Gao
,
Nanoscale
3
,
701
(
2011
).
You do not currently have access to this content.