Optimizing thin metal film deposition techniques from metal-organic precursors such as atomic layer deposition, chemical vapor deposition (CVD), or electron beam-induced deposition (EBID) with the help of surface science analysis tools in ultrahigh vacuum requires a contamination-free precursor delivery technique, especially in the case of the less volatile precursors. For this purpose, the preparation of layers of undecomposed Ni(acac)2 and Co(acac)2 was tried via pulsed spray evaporation of a liquid solution of the precursors in ethanol into a flow of nitrogen on a CVD reactor. Solvent-free layers of intact precursor molecules were obtained when the substrate was held at a temperature of 115 °C. A qualitative comparison of thermally initiated and electron-induced precursor decomposition and metal center reduction was carried out. All deposited films were analyzed with respect to chemical composition quasi in situ by x-ray photoelectron spectroscopy. Thermally initiated decomposition yielded higher metal-to-metal oxide ratios in the deposit than the electron-induced process for which ratios of 60:40 and 20:80 were achieved for Ni and Co, resp. Compared to continuous EBID processes, all deposits showed low levels of carbon impurities of ∼10 at. %. Therefore, postdeposition irradiation of metal acetylacetonate layers by a focused electron beam and subsequent removal of intact precursor by dissolution in ethanol or by heating is proposed as electron beam lithography technique on the laboratory scale for the production of the metal nanostructures.

1.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol., B
26
,
1197
(
2008
).
2.
W. F.
van Dorp
,
T. W.
Hansen
,
J. B.
Wagner
, and
J. T. M.
De Hosson
,
Beilstein J. Nanotechnol.
4
,
474
(
2013
).
3.
N.
Silvis-Cividjian
,
C. W.
Hagen
,
P.
Kruit
,
M. A. J. v.d.
Stam
, and
H. B.
Groen
,
Appl. Phys. Lett.
82
,
3514
(
2003
).
4.
J.
Spencer
,
S.
Rosenberg
,
M.
Barclay
,
Y.-C.
Wu
,
L.
McElwee-White
, and
D.
Howard Fairbrother
,
Appl. Phys. A
117
,
1631
(
2014
).
5.
J.
Warneke
,
W. F.
Van Dorp
,
P.
Rudolf
,
M.
Stano
,
P.
Papp
,
S.
Matejcik
,
T.
Borrmann
, and
P.
Swiderek
,
Phys. Chem. Chem. Phys.
17
,
1204
(
2015
).
6.
J. D.
Wnuk
,
S. G.
Rosenberg
,
J. M.
Gorham
,
W. F.
van Dorp
,
C. W.
Hagen
, and
D. H.
Fairbrother
,
Surf. Sci.
605
,
257
(
2011
).
7.
S. G.
Rosenberg
,
K.
Landheer
,
C. W.
Hagen
, and
D. H.
Fairbrother
,
J. Vac. Sci. Technol., B
30
,
051805
(
2012
).
8.
J. S.
Fisher
,
P. A.
Kottke
,
S.
Kim
, and
A. G.
Fedorov
,
Nano Lett.
15
,
8385
(
2015
).
9.
M.
Bresin
,
M.
Toth
, and
K. A.
Dunn
,
Nanotechnology
24
,
035301
(
2013
).
10.
A.
Lafosse
,
M.
Bertin
, and
R.
Azria
,
Prog. Surf. Sci.
84
,
177
(
2009
).
11.
C. R.
Arumainayagam
,
H.-L.
Lee
,
R. B.
Nelson
,
D. R.
Haines
, and
R. P.
Gunawardane
,
Surf. Sci. Rep.
65
,
1
(
2010
).
12.
E.
Böhler
,
J.
Warneke
, and
P.
Swiderek
,
Chem. Soc. Rev.
42
,
9219
(
2013
).
13.
V.
Friedli
and
I.
Utke
,
J. Phys. D: Appl. Phys.
42
,
125305
(
2009
).
14.
S.
Engmann
,
B.
Ómarsson
,
M.
Lacko
,
M.
Stano
,
Š.
Matejčík
, and
O.
Ingólfsson
,
J. Chem. Phys.
138
,
234309
(
2013
).
15.
P. A.
Premkumar
,
N.
Bahlawane
, and
K.
Kohse-Höinghaus
,
Chem. Vap. Deposition
13
,
219
(
2007
).
16.
T.
Weiss
,
M.
Nowak
,
U.
Mundloch
,
V.
Zielasek
,
K.
Kohse-Höinghaus
, and
M.
Bäumer
,
Rev. Sci. Instrum.
85
,
104104
(
2014
).
17.
N. A.
Roberts
,
J. D.
Fowlkes
,
G. A.
Magel
, and
P. D.
Rack
,
Nanoscale
5
,
408
(
2013
).
18.
T. T.
Kodas
and
M. J.
Hampden-Smith
,
The Chemistry of Metal CVD
(
VCH
,
Weinheim/New York
,
1994
).
19.
W.-Q.
Deng
,
X.
Xu
, and
W. A.
Goddard
,
Nano Lett.
4
,
2331
(
2004
).
20.
V. V.
Bakovets
,
V. N.
Mitkin
, and
N. V.
Gelfond
,
Chem. Vap. Deposition
11
,
368
(
2005
).
21.
C.
Elbuken
,
M.
Yavuz
, and
M. B.
Khamesee
,
J. Appl. Phys.
104
,
044905
(
2008
).
22.
Z.
Zhang
,
T. M.
Nenoff
,
J. Y.
Huang
,
D. T.
Berry
, and
P. P.
Provencio
,
J. Phys. Chem. C
113
,
1155
(
2009
).
23.
T.
Weiss
,
V.
Zielasek
, and
M.
Bäumer
,
Sci. Rep.
5
,
18194
(
2015
).
24.
N.
Bahlawane
,
P. A.
Premkumar
,
Z.
Tian
,
X.
Hong
,
F.
Qi
, and
K.
Kohse-Höinghaus
,
Chem. Mater.
22
,
92
(
2009
).
25.
P.
Antony Premkumar
,
R.
Pankajavalli
,
O. M.
Sreedharan
,
V. S.
Raghunathan
,
K. S.
Nagaraja
, and
C.
Mallika
,
Mater. Lett.
58
,
2256
(
2004
).
26.
C. D.
Wagner
,
L. E.
Davis
,
M. V.
Zeller
,
J. A.
Taylor
,
R. H.
Raymond
, and
L. H.
Gale
,
Surf. Interface Anal.
3
,
211
(
1981
).
27.
D.
Briggs
,
M. P.
Seah
, and
P. M. A.
Sherwood
,
Practical Surface Analysis. Volume 1. Auger and X-ray Photoelectron Spectroscopy
(
Wiley
,
Chichester, UK
,
1990
).
28.
P.
Brault
,
P.
Ranson
,
H.
Estrade-Szwarckopf
, and
B.
Rousseau
,
J. Appl. Phys.
68
,
1702
(
1990
).
29.
M.
Bou
,
J. M.
Martin
,
T.
Le Mogne
, and
L.
Vovelle
,
Appl. Surf. Sci.
47
,
149
(
1991
).
30.
J. C.
Lascovich
,
R.
Giorgi
, and
S.
Scaglione
,
Appl. Surf. Sci.
47
,
17
(
1991
).
31.
S.
Contarini
,
S. P.
Howlett
,
C.
Rizzo
, and
B. A.
De Angelis
,
Appl. Surf. Sci.
51
,
177
(
1991
).
32.
A. P.
Grosvenor
,
M. C.
Biesinger
,
R. S. C.
Smart
, and
N. S.
McIntyre
,
Surf. Sci.
600
,
1771
(
2006
).
33.
J. L.
Droulas
,
T.
Minh Duc
, and
Y.
Jugnet
,
Le Vide, les Couches Minces
258
,
39
(
1991
).
34.
C. D.
Wanger
,
W. M.
Riggs
,
L. E.
Davis
,
J. F.
Moulder
, and
G. E.
Muilenberg
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin-Elmer Corporation, Physical Electronics Division
,
Eden Prairie, MN
,
1979
).
35.
P. Y.
Jouan
,
M. C.
Peignon
,
C.
Cardinaud
, and
G.
Lempérière
,
Appl. Surf. Sci.
68
,
595
(
1993
).
36.
J.
Chao
,
H.-T.
Wang
,
B.
Xia
,
H.-B.
Liu
,
Z.-D.
Xiao
, and
S.-J.
Xiao
,
J. Phys. Chem. B
110
,
24565
(
2006
).
37.
N. S.
McIntyre
and
M. G.
Cook
,
Anal. Chem.
47
,
2208
(
1975
).
38.
J.
Yang
,
H.
Liu
,
W. N.
Martens
, and
R. L.
Frost
,
J. Phys. Chem. C
114
,
111
(
2010
).
39.
M. O.
de Souza
,
F. M. T.
Mendes
,
R. F.
de Souza
, and
J. H. Z.
dos Santos
,
Microporous Mesoporous Mater.
69
,
217
(
2004
).
40.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
41.
J.
Ryu
,
N.
Jung
,
D.-H.
Lim
,
D. Y.
Shin
,
S. H.
Park
,
H. C.
Ham
,
J. H.
Jang
,
H.-J.
Kim
, and
S. J.
Yoo
,
Chem. Commun.
50
,
15940
(
2014
).
42.
S.
Kumar
,
N.
Singhal
,
R. K.
Singh
,
P.
Gupta
,
R.
Singh
, and
S. L.
Jain
,
Dalton Trans.
44
,
11860
(
2015
).
43.
A.
Galtayries
and
J.
Grimblot
,
J. Electron Spectrosc. Relat. Phenom.
98–99
,
267
(
1999
).
44.
T. L.
Barr
,
J. Phys. Chem.
82
,
1801
(
1978
).
45.
J.-C.
Dupin
,
D.
Gonbeau
,
P.
Vinatier
, and
A.
Levasseur
,
Phys. Chem. Chem. Phys.
2
,
1319
(
2000
).
46.
H.
Noller
and
G.
Ritter
,
J. Chem. Soc., Faraday Trans. 1
80
,
275
(
1984
).
47.
M.
Utriainen
,
M.
Kröger-Laukkanen
,
L.-S.
Johansson
, and
L.
Niinistö
,
Appl. Surf. Sci.
157
,
151
(
2000
).
48.
V. I.
Kodolov
,
E. I.
Tchirkova
,
S. G.
Bystrova
,
I. N.
Shabanova
,
O. V.
Popova
, and
S. N.
Babushkina
,
J. Electron Spectrosc. Relat. Phenom.
88–91
,
977
(
1998
).
49.
P. S.
Gentile
and
A.
Dadgar
,
J. Chem. Eng. Data
13
,
236
(
1968
).
50.
V. A.
Barabanov
,
S. L.
Davydova
, and
N. A.
Plate
,
Zh. Fiz. Khim.
42
,
990
(
1968
).
51.
A. T.
Pilipenko
and
L. I.
Savransky
,
Talanta
34
,
77
(
1987
).
52.
A.
Perentes
,
G.
Sinicco
,
G.
Boero
,
B.
Dwir
, and
P.
Hoffmann
,
J. Vac. Sci. Technol., B
25
,
2228
(
2007
).
53.
S. G.
Rosenberg
,
M.
Barclay
, and
D. H.
Fairbrother
,
ACS Appl. Mater. Interfaces
6
,
8590
(
2014
).
54.
M.
Utriainen
,
M.
Kröger-Laukkanen
, and
L.
Niinistö
,
Mater. Sci. Eng.: B
54
,
98
(
1998
).
55.
L. T.
Zhuravlev
,
Colloids Surf., A
173
,
1
(
2000
).
You do not currently have access to this content.