This study investigates how the Cu concentration in Zr-Cu-N films affects the films' antibacterial capacity and mechanical properties. Zr-Cu-N films were prepared by reactive magnetron sputtering from composed Zr/Cu targets using a dual magnetron in an Ar + N2 mixture. The antibacterial capacity of Zr-Cu-N films was tested on Escherichia coli (E. coli) bacteria. The mechanical properties of Zr-Cu-N films were determined from the load vs. displacement curves measured using a Fisherscope H 100 microhardness tester. The antibacterial capacity was modulated by the amount of Cu added to the Zr-Cu-N film. The mechanical properties were varied based on the energy Ei delivered to the growing film by bombarding ions. It was found that it is possible to form Zr-Cu-N films with Cu concentrations ≥10 at. % that simultaneously exhibit (1) 100% killing efficiency Ek for E. coli bacteria on their surfaces, and (2) (1) high hardness H of about 25 GPa, (2) high ratio H/E* ≥ 0.1, (3) high elastic recovery We ≥ 60% and (4) compressive macrostress (σ < 0). The Zr-Cu-N films with these parameters are flexible/antibacterial films that exhibit enhanced resistance to cracking. This enhanced resistance was tested by (1) bending the Mo and Ti strip coated by sputtered Zr-Cu-N films (bending test) and (2) loading the surface of the Zr-Cu-N sputtered on a Si substrate by a diamond indenter at high loads up to 1 N (indentation test). Physical, mechanical, and antibacterial properties of Zr-Cu-N films are described in detail. In summary, it can be concluded that Zr-Cu-N is a promising new material for creating flexible antibacterial coatings on contact surfaces.

1.
L. A.
Brook
,
P.
Evans
,
H. A.
Foster
,
M. E.
Pemble
,
A.
Steele
,
D. W.
Sheel
, and
H. M.
Yates
,
J. Photochem. Photobiol. A
187
,
53
(
2007
).
2.
J.
Musil
,
M.
Louda
,
R.
Čerstvý
,
P.
Baroch
,
I. B.
Ditta
,
A.
Steele
, and
H. A.
Foster
,
Nanoscale Res. Lett.
4
,
313
(
2009
).
3.
H. A.
Foster
,
D. W.
Sheel
,
P.
Sheel
,
P.
Evans
,
S.
Varghese
,
N.
Rutschke
, and
H. M.
Yates
,
J. Photochem. Photobiol. A
216
,
283
(
2010
).
4.
C. M.
Jones
and
E. M. V.
Hoek
,
J. Nanopart. Res.
12
,
1531
(
2010
).
5.
H. A.
Foster
,
I. B.
Ditta
,
S.
Varghese
, and
A.
Steele
,
Appl. Microbiol. Biotechnol.
90
,
1847
(
2011
).
6.
J. H.
Hsieh
,
T. H.
Yeh
,
S. Y.
Hung
,
S. Y.
Chang
,
W.
Wu
, and
C.
Li
,
Mater. Res. Bull.
47
,
2999
(
2012
).
7.
J. H.
Hsieh
,
T. H.
Yeh
,
C.
Li
,
S. Y.
Chang
,
C. H.
Chiu
, and
C. T.
Huang
,
Surf. Coat. Technol.
228
,
S116
(
2013
).
8.
J. H.
Hsieh
,
C. H.
Chiu
,
C.
Li
,
W.
Wu
, and
S. Y.
Chang
,
Surf. Coat. Technol.
233
,
159
(
2013
).
9.
J. H.
Hsieh
,
T. H.
Yeh
,
C.
Li
,
C. H.
Chiu
, and
C. T.
Huang
,
Vacuum
87
,
160
(
2013
).
10.
P. K.
Chu
,
Thin Solid Films
528
,
93
(
2013
).
11.
H. L.
Huang
,
Y. Y.
Chang
,
J. C.
Weng
,
Y. C.
Chen
,
C. H.
Lai
, and
T. M.
Shieh
,
Thin Solid Films
528
,
151
(
2013
).
12.
H. L.
Huang
,
Y. Y.
Chang
,
Y. C.
Chen
,
C. H.
Lai
, and
M. Y. C.
Chen
,
Thin Solid Films
549
,
108
(
2013
).
13.
Y.-H.
Chen
,
C.-C.
Hsu
, and
J.-L.
He
,
Surf. Coat. Technol.
232
,
868
(
2013
).
14.
S.
Rtimi
,
O.
Baghriche
,
A.
Ehiasarian
,
R.
Bandorf
, and
J.
Kiwi
,
Surf. Coat. Technol.
250
,
14
(
2014
).
15.
G.
Borkow
and
J.
Gabbay
,
Curr. Med. Chem.
12
,
2163
(
2005
).
16.
X. B.
Tian
,
Z. M.
Wang
, and
S. Q.
Yang
,
Surf. Coat. Technol.
201
,
8606
(
2007
).
17.
Y.-C.
Kuo
,
J.-W.
Lee
,
C.-J.
Wang
, and
Y.-J.
Chang
,
Surf. Coat. Technol.
202
,
854
(
2007
).
18.
P. C.
Liu
,
J. H.
Hsieh
,
C.
Li
,
Y. K.
Chang
, and
C. C.
Yang
,
Thin Solid Films
517
,
4956
(
2009
).
19.
V.
Ondok
,
J.
Musil
,
M.
Meissner
,
R.
Čerstvý
, and
K.
Fajfrlík
,
J. Photochem. Photobiol. A
209
,
158
(
2010
).
20.
T. W.
Chiu
,
Y. C.
Yang
,
A. C.
Yeh
,
Y. P.
Wang
, and
Y. W.
Feng
,
Proceedings of the 11th International Symposium on Sputtering and Plasma Processes (ISSP 2011)
, Kyoto Research Park, Kyoto, Japan, 6–8 July
2011
, pp.
495
498
.
21.
T. W.
Chiu
,
B. S.
Yu
,
Y. R.
Wang
,
K. T.
Chen
, and
Y. T.
Lin
,
J. Alloy. Compd.
509
,
2933
(
2011
).
22.
Y.-H.
Chan
,
C.-F.
Huang
,
K.-L.
Ou
, and
P.-W.
Peng
,
Surf. Coat. Technol.
206
,
1037
(
2011
).
23.
V.
Stranak
 et al,
Mater. Sci. Eng. C
31
,
1512
(
2011
).
24.
P.
Osorio-Vargas
,
R.
Sanjines
,
C.
Ruales
,
C.
Castro
,
C.
Pulgarin
,
A.-J.
Rengifo-Herrera
,
J.-C.
Lavanchy
, and
J.
Kiwi
,
J. Photochem. Photobiol. A
220
,
70
(
2011
).
25.
G.
Grass
,
Ch.
Rensing
, and
M.
Solioz
,
Appl. Environ. Microbiol.
77
,
1541
(
2011
).
26.
S. K.
Singhal
,
M.
Lal
,
Lata
,
S. R.
Kabi
, and
R. B.
Mathur
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
3
,
045011
(
2012
).
27.
X.
Zhang
,
X.
Huang
,
Y.
Ma
,
N.
Lin
,
A.
Fan
, and
B.
Tang
,
Appl. Surf. Sci.
258
,
10058
(
2012
).
28.
T.-W.
Chiu
,
Y.-C.
Yang
,
A.-C.
Yeh
,
Y.-P.
Wang
, and
Y.-W.
Feng
,
Vacuum
87
,
174
(
2013
).
29.
J.
Musil
,
J.
Blažek
,
K.
Fajfrlík
,
R.
Čerstvý
, and
Š.
Prokšová
,
Appl. Surf. Sci.
276
,
660
(
2013
).
30.
J. H.
Hsieh
,
T. H.
Yeh
,
S. Y.
Chang
,
C.
Li
,
C. C.
Tseng
, and
W.
Wu
,
Surf. Coat. Technol.
228
,
S81
(
2013
).
31.
N.-H.
Chen
,
C.-J.
Chung
,
C.-C.
Chiang
,
K.-C.
Chen
, and
J.-L.
He
,
Surf. Coat. Technol.
236
,
29
(
2013
).
32.
H.-W.
Chen
,
K.-C.
Hsu
,
Y.-C.
Chan
,
J.-G.
Duh
,
J.-W.
Lee
,
J. S.-C.
Jang
, and
G.-J.
Chen
,
Thin Solid Films
561
,
98
(
2014
).
33.
J. P.
Chu
,
T.-Y.
Liu
,
C.-L.
Li
,
C.-H.
Wang
,
J. S. C.
Jang
,
M.-J.
Chen
,
S.-H.
Chang
, and
W.-C.
Huang
,
Thin Solid Films
561
,
102
(
2014
).
34.
J.
Musil
,
J.
Blažek
,
K.
Fajfrlík
, and
R.
Čerstvý
,
Surf. Coat. Technol.
264
,
114
(
2015
).
35.
J.
Musil
,
Thin Films and Coatings: Toughening and Toughening Characterization
, edited by
S.
Zhang
(
CRC
,
Boca Raton, FL
,
2015
), pp.
377
463
.
36.
J.
Musil
,
Surf. Coat. Technol.
207
,
50
(
2012
).
37.
38.
J.
Musil
,
J.
Šícha
,
D.
Heřman
, and
R.
Čerstvý
,
J. Vac. Sci. Technol. A
25
,
666
(
2007
).
39.
P.
Pokorný
,
J.
Musil
,
P.
Fitl
,
M.
Novotný
,
J.
Lančok
, and
J.
Bulíř
,
Plasma Processes Polym.
12
,
416
(
2015
).
40.
International Centre for Diffraction Data, PDF-2 Database Sets 1–47, Pennsylvania, U.S.A. (
1997
).
You do not currently have access to this content.