Argon ion kinetic energy spectra at different discharge voltages (between 480 and 600 V) of a commercial cold cathode ion source IQP10/63 are reported. The high kinetic energy cut-off depends on the discharge voltage and the corresponding plasma potential due to excess positive charges which is found to be about 136 V. Exposure of single layer hexagonal boron nitride on rhodium to the beam of the ion source leads to the formation of nanotents, i.e., stable atomic protrusions. A positive bias voltage is applied to the target sample to block the positive ions produced by the ion source. However, application of a positive bias potential (800 eV), which is higher than the kinetic energy cut-off, still allows the formation of nanotents and its observation with scanning tunneling microscopy. This indicates that the ion source also produces neutral atoms with kinetic energies higher than the penetration threshold across a single layer of hexagonal boron nitride.

1.
C. H.
Kim
,
S. H.
Ahn
, and
D. Y.
Jang
,
Vacuum
86
,
1014
(
2012
).
2.
H.
Niehus
,
W.
Heiland
, and
E.
Taglauer
,
Surf. Sci. Rep.
17
,
213
(
1993
).
3.
T.
Michely
and
C.
Teichert
,
Phys. Rev. B
50
,
11156
(
1994
).
4.
H. Y.
Cun
,
M.
Iannuzzi
,
A.
Hemmi
,
S.
Roth
,
J.
Osterwalder
, and
T.
Greber
,
Nano Lett.
13
,
2098
(
2013
).
5.
S.
Standop
,
O.
Lehtinen
,
C.
Herbig
,
G.
Lewes-Malandrakis
,
F.
Craes
,
J.
Kotakoski
,
T.
Michely
,
A.
Krasheninnikov
, and
C.
Busse
,
Nano Lett.
13
,
1948
(
2013
).
6.
E. H.
Åhlgren
,
S. K.
Hämäläinen
,
O.
Lehtinen
,
P.
Liljeroth
, and
J.
Kotakoski
,
Phys. Rev. B
88
,
155419
(
2013
).
7.
H. Y.
Cun
,
M.
Iannuzzi
,
A.
Hemmi
,
J.
Osterwalder
, and
T.
Greber
,
Surf. Sci.
634
,
95
(
2015
).
8.
9.
M.
Corso
,
W.
Auwärter
,
M.
Muntwiler
,
A.
Tamai
,
T.
Greber
, and
J.
Osterwalder
,
Science
303
,
217
(
2004
).
10.
S.
Berner
 et al,
Angew. Chem. Int. Ed.
46
,
5115
(
2007
).
11.
H. Y.
Cun
,
M.
Iannuzzi
,
A.
Hemmi
,
J.
Osterwalder
, and
T.
Greber
,
ACS Nano
8
,
1014
(
2014
).
12.
H. Y.
Cun
,
M.
Iannuzzi
,
A.
Hemmi
,
J.
Osterwalder
, and
T.
Greber
,
ACS Nano
8
,
7423
(
2014
).
13.
Z.
Nouri
,
R.
Li
,
R. A.
Holt
, and
S. D.
Rosner
,
Nucl. Instrum. Methods Phys. Res., Sect. A
614
,
174
(
2010
).
14.
J.
Nagy
,
Nucl. Instrum. Methods
32
,
229
(
1965
).
15.
P.
Rohwer
,
H.
Baumann
,
K.
Bethge
, and
W.
Schütze
,
Nucl. Instrum. Methods Phys. Res.
204
,
245
(
1982
).
16.
J.
Kotakoski
,
C. H.
Jin
,
O.
Lehtinen
,
K.
Suenaga
, and
A. V.
Krasheninnikov
,
Phys. Rev. B
82
,
113404
(
2010
).
17.
F.
Aumayr
,
S.
Facsko
,
A. S.
El-Said
,
C.
Trautmann
, and
M.
Schleberger
,
J. Phys.: Condens. Matter
23
,
393001
(
2011
).
You do not currently have access to this content.