Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl4) and titanium tetra-isopropoxide [Ti(OCH(CH3)2)4, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO2 film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO2 on SiO2 before substantial growth takes place on Si–H. On both Si–H and Si–OH, the surface reactions proceed during the first few TiCl4/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.

1.
E. K.
Broadbent
and
C. L.
Ramiller
,
J. Electrochem. Soc.
131
,
1427
(
1984
).
2.
T. T.
Kodas
and
M. J.
Hampden-Smith
,
The Chemistry of Metal CVD
(
VCH
,
Weinheim, NY
,
1994
).
3.
W. L.
Gladfelter
,
Chem. Mater.
5
,
1372
(
1993
).
4.
K. J.
Park
,
J. M.
Doub
,
T.
Gougousi
, and
G. N.
Parsons
,
Appl. Phys. Lett.
86
,
051903
(
2005
).
5.
R.
Chen
,
H.
Kim
,
P. C.
McIntyre
,
D. W.
Porter
, and
S. F.
Bent
,
Appl. Phys. Lett.
86
,
191910
(
2005
).
6.
E.
Farm
,
M.
Kemell
,
M.
Ritala
, and
M.
Leskela
,
Chem. Vap. Deposition
12
,
415
(
2006
).
7.
A.
Sinha
,
D. W.
Hess
, and
C. L.
Henderson
,
J. Electrochem. Soc.
153
,
G465
(
2006
).
8.
X.
Jiang
and
S. F.
Bent
,
J. Phys. Chem. C
113
,
17613
(
2009
).
9.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
10.
F. S.
Minaye Hashemi
,
C.
Prasittichai
, and
S. F.
Bent
,
ACS Nano
9
,
8710
(
2015
).
11.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
13.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
14.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
, and
P.
Haussalo
,
Chem. Mater.
5
,
1174
(
1993
).
15.
Q.
Xie
,
Y.-L.
Jiang
,
C.
Detavernier
,
D.
Deduytsche
,
R. L.
Van Meirhaeghe
,
G.-P.
Ru
,
B.-Z.
Li
, and
X.-P.
Qu
,
J. Appl. Phys.
102
,
083521
(
2007
).
16.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
, and
V.
Sammelselg
,
J. Cryst. Growth
220
,
531
(
2000
).
17.
E.-L.
Lakomaa
,
S.
Haukka
, and
T.
Suntola
,
Appl. Surf. Sci.
60–61
,
742
(
1992
).
18.
J. D.
Ferguson
,
A. R.
Yoder
,
A. W.
Weimer
, and
S. M.
George
,
Appl. Surf. Sci.
226
,
393
(
2004
).
19.
R. P.
Chaukulkar
and
S.
Agarwal
,
J. Vac. Sci. Technol. Vac. Surf. Films
31
,
031509
(
2013
).
20.
V. R.
Anderson
,
A. S.
Cavanagh
,
A. I.
Abdulagatov
,
Z. M.
Gibbs
, and
S. M.
George
,
J. Vac. Sci. Technol. Vac. Surf. Films
32
,
01A114
(
2014
).
21.
S.
Haukka
and
A.
Root
,
J. Phys. Chem.
98
,
1695
(
1994
).
22.
O.
Sneh
and
S. M.
George
,
J. Phys. Chem.
99
,
4639
(
1995
).
23.
L. T.
Zhuravlev
,
Colloids Surf. Physicochem. Eng. Asp
ects
173
,
1
(
2000
).
24.
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
V. A.
Burrows
,
J. Vac. Sci. Technol. A
7
,
2104
(
1989
).
25.
C. J.
Powell
and
A.
Jablonski
,
NIST Electron Effective-Attenuation-Length Database
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2011
).
26.
G. G.
Fuentes
,
E.
Elizalde
,
F.
Yubero
, and
J. M.
Sanz
,
Surf. Interface Anal.
33
,
230
(
2002
).
27.
S.
Haukka
,
E. L.
Lakomaa
, and
A.
Root
,
J. Phys. Chem.
97
,
5085
(
1993
).
28.
M. L.
Green
 et al,
J. Appl. Phys.
92
,
7168
(
2002
).
29.
M. A.
Alam
and
M. L.
Green
,
J. Appl. Phys.
94
,
3403
(
2003
).
30.
O.
Nilsen
,
C. E.
Mohn
,
A.
Kjekshus
, and
H.
Fjellvåg
,
J. Appl. Phys.
102
,
024906
(
2007
).
You do not currently have access to this content.