Lanthanide based luminescent materials are highly suitable as down conversion materials in combination with a UV-absorbing host material. The authors have used TiO2 as the UV-absorbing host material and investigated the energy transfer between TiO2 and 11 different lanthanide ions, Ln3+ (Ln = La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in thin films grown by atomic layer deposition. They have also investigated the possibility to improve the overall energy transfer from TiO2 to Yb3+ with a second Ln3+, in order to enhance down conversion. The films were grown at a substrate temperature of 300 °C, using the Ln(thd)3/O3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and TiCl4/H2O precursor pairs. The focus of the work is to explore the energy transfer from TiO2 to Ln3+ ions, and the energy transfer between Ln3+ and Yb3+ ions, which could lead to efficient down conversion. The samples have been characterized by x-ray diffraction, x-ray fluorescence, spectroscopic ellipsometry, and photoluminescence. All films were amorphous as deposited, and the samples have been annealed at 600, 800, and 1000 °C in order to investigate the correlation between the crystallinity and luminescence. The lanthanum titanium oxide samples showed a weak and broad emission centered at 540 nm, which was absent in all the other samples, indicating energy transfer from TiO2 to Ln3+ in all other lanthanide samples. In the amorphous phase, all samples, apart from La, Tb, and Tm, showed a typical f-f emission when excited by a 325 nm HeCd laser. None of the samples showed any luminescence after annealing at 1000 °C due to the formation of Ln2Ti2O7. Samples containing Nd, Sm, and Eu show a change in emission spectrum when annealed at 800 °C compared to the as-deposited samples, indicating that the smaller lanthanides crystallize in a different manner than the larger lanthanides. Energy transfer from Ln3+ to Yb3+ was observed neither in the amorphous or annealed samples. On the other hand, Yb3+ was found to be an efficient sensitizer for Ho3+'s 1200 nm emission.

1.
T.
Jüstel
,
H.
Nikol
, and
C.
Ronda
,
Angew. Chem. Int. Ed.
37
,
3084
(
1998
).
2.
T.
Trupke
,
M. A.
Green
, and
P.
Wurfel
,
J. Appl. Phys.
92
,
1668
(
2002
).
3.
B. S.
Richards
,
Sol. Energy Mater. Sol. Cells
90
,
1189
(
2006
).
4.
Z. E. R.
Abrams
,
M.
Gharghi
,
A.
Niv
,
C.
Gladden
, and
X.
Zhang
,
Sol. Energy Mater. Sol. Cells
99
,
308
(
2012
).
5.
Q. Y.
Zhang
and
X. Y.
Huang
,
Prog. Mater. Sci.
55
,
353
(
2010
).
6.
B. M.
van der Ende
,
L.
Aarts
, and
A.
Meijerink
,
PCCP
11
,
11081
(
2009
).
7.
B. M.
van der Ende
,
L.
Aarts
, and
A.
Meijerink
,
Adv. Mater.
21
,
3073
(
2009
).
8.
L.
Xie
,
Y.
Wang
, and
H.
Zhang
,
Appl. Phys. Lett.
94
,
061905
(
2009
).
9.
P.
Vergeer
,
T. J. H.
Vlugt
,
M. H. F.
Kox
,
M. I.
den Hertog
,
J. P. J. M.
van der Eerden
, and
A.
Meijerink
,
Phys. Rev. B
71
,
014119
(
2005
).
10.
Z.
Liu
,
J.
Li
,
L.
Yang
,
Q.
Chen
,
Y.
Chu
, and
N.
Dai
,
Sol. Energy Mater. Sol. Cells
122
,
46
(
2014
).
11.
J.
Chen
,
H.
Zhang
,
F.
Li
, and
H.
Guo
,
Mater. Chem. Phys.
128
,
191
(
2011
).
12.
D. C.
Yu
,
F. T.
Rabouw
,
W. Q.
Boon
,
T.
Kieboom
,
S.
Ye
,
Q. Y.
Zhang
, and
A.
Meijerink
,
Phys. Rev. B
90
,
165126
(
2014
).
13.
J.-C.
Bünzli
and
S.
Eliseeva
,
Lanthanide Luminescence
, edited by
P.
Hänninen
and
H.
Härmä
(
Springer
,
Berlin/Heidelberg
,
2011
), Vol.
7
, pp.
1
45
.
14.
A. J.
Kenyon
,
Prog. Quantum Electron.
26
,
225
(
2002
).
15.
V.
Miikkulainen
,
M.
Leskela
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
16.
P.-A.
Hansen
,
H.
Fjellvag
,
T.
Finstad
, and
O.
Nilsen
,
Dalton Trans.
42
,
10778
(
2013
).
17.
J.
Aarik
,
A.
Aidla
,
T.
Uustare
, and
V.
Sammelselg
,
J. Cryst. Growth
148
,
268
(
1995
).
18.
P.-A.
Hansen
,
H.
Fjellvåg
,
T. G.
Finstad
, and
O.
Nilsen
,
RSC Adv.
4
,
11876
(
2014
).
19.
P.-A.
Hansen
,
H.
Fjellvåg
,
T. G.
Finstad
, and
O.
Nilsen
,
Chem. Vap. Deposition
20
,
274
(
2014
).
20.
J. G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
21.
J. G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
2137
(
1996
).
22.
P.
Tanner
,
Lanthanide Luminescence
, edited by
P.
Hänninen
and
H.
Härmä
(
Springer
,
Berlin/Heidelberg
,
2011
), Vol.
7
, pp.
183
233
.
23.
M.
Uno
,
A.
Kosuga
,
M.
Okui
,
K.
Horisaka
, and
S.
Yamanaka
,
J. Alloys Compd.
400
,
270
(
2005
).
24.
P. A. M.
Berdowski
and
G.
Blasse
,
J. Solid State Chem.
62
,
317
(
1986
).
25.
L. H.
Brixner
,
Inorg. Chem.
3
,
1065
(
1964
).
26.
E. G.
Reut
and
A. I.
Ryskin
,
Phys. Status Solidi A
17
,
47
(
1973
).
27.
P.
Boutinaud
,
P.
Putaj
,
R.
Mahiou
,
E.
Cavalli
,
A.
Speghini
, and
M.
Bettinelli
,
Spectrosc. Lett.
40
,
209
(
2007
).
28.
P.
Boutinaud
,
E.
Cavalli
, and
M.
Bettinelli
,
J. Phys.: Condens. Matter
19
,
386230
(
2007
).
29.
W.-J.
Zhang
,
Q.-J.
Chen
,
Q.
Qian
, and
Q.-Y.
Zhang
,
J. Am. Ceram. Soc.
95
,
663
(
2012
).
30.
B.
Peng
and
T.
Izumitani
,
Opt. Mater.
4
,
797
(
1995
).
31.
G. H.
Dieke
,
H. M.
Crosswhite
, and
H.
Crosswhite
,
Spectra and Energy Levels of Rare Earth Ions in Crystals
(
Interscience
,
New York
,
1968
).
32.
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
Chem. Phys. Lett.
418
,
185
(
2006
).
You do not currently have access to this content.