Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt3) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO2, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10−6 Ω cm was obtained for approximately 97 nm Ag film on SiO2/Si substrate. The thickness was determined from the SEM cross section on the SiO2/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO2 surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

1.
International Technology Roadmap for Semiconductors, Interconnects (2013).
2.
R.
Manepalli
,
F.
Stepniak
,
S. A.
Bidstrup-Allen
, and
P. A.
Kohl
,
IEEE Trans. Adv. Pack.
22
,
4
(
1999
).
3.
E.
Cleveland
,
O. J.
Glembocki
, and
S. M.
Prokes
,
Proc. SPIE
8467
,
84670H
(
2012
).
4.
M.
Boccas
,
T.
Vucina
,
C.
Araya
,
E.
Vera
, and
C.
Ahhee
,
Thin Solid Films
502
,
275
(
2006
).
5.
A. P.
Piedade
,
M. T.
Vieira
,
A.
Martins
, and
F.
Silva
,
Nanotechnology
18
,
105103
(
2007
).
6.
M. A.
Butler
and
A. J.
Ricco
,
Appl. Phys. Lett.
53
,
1471
(
1988
).
7.
A. J.
Nagy
,
G.
Mestl
, and
R.
Schlögl
,
J. Catal.
188
,
58
(
1999
).
8.
M.
Kariniemi
,
J.
Niinistö
,
T.
Hatanpää
,
M.
Kemell
,
T.
Sajavaara
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
23
,
2901
(
2011
).
9.
A.
Niskanen
,
T.
Hatanpää
,
K.
Arstila
,
M.
Leskelä
, and
M.
Ritala
,
Chem. Vap. Deposition
13
,
408
(
2007
).
10.
F. J.
van den Bruele
,
M.
Smets
,
A.
Illiberi
,
Y.
Creyghton
,
P.
Buskens
,
F.
Roozeboom
, and
P.
Poodt
,
J. Vac. Sci. Technol., A
33
,
01A131
(
2015
).
11.
H. E.
Porteanu
,
R.
Gesche
, and
K.
Wandel
,
Plasma Sources Sci. Technol.
22
,
035016
(
2013
).
12.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
,
Rev. Mod. Phys.
81
,
739
(
2009
).
13.
C. T.
Campbell
,
Surf. Sci. Rep.
27
,
1
(
1997
).
14.
J. W.
Clancey
,
A. S.
Cavanagh
,
R. S.
Kukreja
,
A.
Kongkanand
, and
S. M.
George
,
J. Vac. Sci. Technol., A
33
,
01A130
(
2015
).
15.
L.
Baker
,
A. S.
Cavanag
,
J.
Yin
,
S. M.
George
,
A.
Kongkanand
, and
F. T.
Wagner
,
Appl. Phys. Lett.
101
,
111601
(
2012
).
16.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollar
,
Surf. Sci.
411
,
186
(
1998
).
17.
I. N.
Yakovkin
and
M.
Gutowski
,
Surf. Sci.
601
,
1481
(
2007
).
18.
H.
Kim
,
J. Vac. Sci. Technol., B
21
,
2231
(
2003
).
19.
E. T.
Eisenbraun
,
A.
Klaver
,
Z.
Patel
,
G.
Nuesca
, and
A. E.
Kaloyeros
,
J. Vac. Sci. Technol., B
19
,
585
(
2001
).
20.
T. W. H.
Oates
,
H.
Wormeester
, and
H.
Arwin
,
Prog. Surf. Sci.
86
,
328
(
2011
).
21.
H.
Tompkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(
William Andrew
,
New York
,
2005
).
22.
S.
Babar
and
J. H.
Weaver
,
Appl. Opt.
54
,
477
(
2015
).
23.
A. D.
Rakić
,
A. B.
Djurišić
,
J. M.
Elazar
, and
M. L.
Majewski
,
Appl. Opt.
37
,
5271
(
1998
).
24.
T. W. H.
Oates
and
A.
Mücklich
,
Nanotechnology
16
,
2606
(
2005
).
25.
S.
Marsillac
,
S. A.
Little
, and
R. W.
Collins
,
Thin Solid Films
519
,
2936
(
2011
).
You do not currently have access to this content.