A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be obtained with a bulk film oxygen level of ∼0.54 oxygen as determined by microprobe analysis when an evaporation rate of ∼0.313 mg/cm2 min was used in an atmosphere of D2 or T2 gas at a system deposition pressure of 1 × 10−3 Torr (1.33 × 10−1 Pa) in an evaporation time of ∼2 min. Platelet type (i.e., a film microstructure showing an overlay of flat plates with large grain sizes) film structures were observed for most films with some film mechanical properties determined (i.e., grain size and Vickers μ-hardness), and reduced stress levels were seen with initial normalized differential (tensile) stress levels being (1.0–4.0) × 108 dyne/cm2 for tritium loaded samples and (1.5 ± 0.5) × 109 dyne/cm2 for deuterium loaded samples. Also, stress aging characteristics were determined for some hydride films prepared in a radioactive tritium gas atmosphere. Tritium loading, however, had the undesirable characteristic of having to dispose of the internal processing system fixtures, which can be minimized, but the reactive evaporation technique produced desirable thin films.

1.
D. M.
Mattox
,
SVC Bulletin
(
Society of Vacuum Coaters
,
Spring
,
2014
), pp.
50
51
.
2.
M.
Aüwater
, “
Process for manufacturing of thin films
,” U.S. patent 2,920,002 (5 January
1960
).
3.
D. S.
Brinsmaid
,
G. J.
Koch
,
W. J.
Keenan
, and
W. F.
Parson
, “
Method for obtaining titanium oxide coatings
,” U.S. patent 2,784,115 (5 March
1957
).
4.
E.
Cremer
,
T.
Kraus
, and
E.
Ritter
,
Z. Electrochem.
62
,
939
(
1958
).
5.
E.
Ritter
,
J. Vac. Sci. Technol.
3
,
225
(
1966
).
6.
W.
Heitman
,
Appl. Opt.
10
,
2414
(
1971
).
7.
D.
Kahng
and
B. B.
Kosicki
, “
Vacuum evaporation deposition of group IIIA metal nitrides
,” U.S. patent 3,551,312 (29 December
1970
).
8.
R.
Nimmagadda
and
R. F.
Bunshah
,
J. Vac. Sci. Technol.
8
,
VM85
(
1971
).
9.
H.
Katto
,
K.
Kobayashi
,
Y.
Koga
, and
M.
Koyama
, “
Method of manufacturing a metallic oxide film on a substrate
,” U.S. patent No. 3,668,095 (6 June
1972
).
10.
R. F.
Bunshah
,
J. Vac, Sci. Technol.
10
,
271
(
1973
).
11.
R. F.
Bunshah
and
A. C.
Raghuram
,
J. Vac. Sci. Technol.
9
,
1385
(
1972
).
12.
R. F.
Bunshah
, “
High-rate deposition of carbides by activated reactive evaporation
,” U.S. patent 3,791,852 (12 February
1974
).
13.
M.
Colen
and
R. F.
Bunshah
,
J. Vac. Sci. Technol.
13
,
536
(
1976
).
14.
R. F.
Bunshah
,
Thin Solid Films
80
,
255
(
1981
).
15.
C. V.
Deshpandey
and
R. F.
Bunshah
,
AIP Conf. Proc.
149
,
33
(
1986
).
16.
H.
Nozoye
,
N.
Nishimiya
, and
H.
Sato
,
Appl. Phys. Lett.
54
,
231
(
1989
).
17.
K.
Reichelt
and
X.
Jiang
,
Thin Solid Films
191
,
91
(
1990
).
18.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
21
,
S74
(
2003
).
19.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
) in 50 Years of Science, Technology, and the AVS (1953–2003), Second Series Vol. 21, No.5, Supplement-Special Issue.
20.
P. M.
Martin
,
Vac. Technol. & Coat.
36
,
32
(
2006
).
21.
N.
Ishida
and
F.
Daisuke
,
J. Vac. Sci. Technol. A
30
,
051402
(
2012
).
22.
J. E.
Stevens
,
A. J.
Lohn
,
S. A.
Decker
,
B. L.
Doyle
,
P. R.
Mickel
, and
M. J.
Marinella
,
J. Vac. Sci. Technol. A
32
,
021501
(
2014
).
23.
E.
Sarhammar
,
S.
Berg
, and
T.
Nyberg
,
J. Vac. Sci. Technol. A
32
,
041517
(
2014
).
24.
Handbook of Thin Film Technology
, edited by
L. I.
Maissel
and
R.
Glang
(
McGraw-Hill Book Company
,
New York
,
1983
), Chap. 1, pp.
1
85
.
25.
D. M.
Mattox
,
Handbook of Physical Vapor Deposition (PVD) Processing—Film Formation, Adhesion, Surface Preparation and Contamination Control
(
Noyes
,
Park Ridge, NJ
,
1978
), Chaps. 1, 3, 4, 5, 8, and 9, pp.
3
, 147, 216, 241, 302, 404, 405, 425, 447, 489, and 490.
26.
R. F.
Bunshah
,
Deposition Technologies for Thin Film and Coatings—Developments and Applications
(
Noyes
,
Park Ridge, NJ
,
1982
), Chaps. 1 and 4, pp.
122
138
.
27.
Handbook of Ion—Beam Processing Technology—Principles, Deposition, Film Modification and Synthesis
, edited by
J. J.
Cuomo
,
S. M.
Rossnagel
, and
H. R.
Kaufman
(
Noyes
,
Park Ridge, NJ
,
1989
), Chap.10, pp.
187
189
, 367–368.
28.
S. M.
Rossnagel
,
J. J.
Cuomo
, and
W. D.
Westwood
,
Handbook of Plasma Processing Technology—Fundamentals, Etching, Deposition, and Surface Interactions
(
Noyes Publications
,
Park Ridge, NJ
,
1990
), Chap. 15, pp.
373
383
.
29.
J. L.
Vossen
and
W.
Kern
,
Thin Film Processes II
(
Academic
,
Boston, MA
,
1991
), Parts I, II-2, and V-2, pp.
5
, 80–102, 117, 128, and 176.
30.
M.
Ohring
,
Materials Science of Thin Films—Deposition and Structure
, Second ed. (
Academic
,
San Diego, CA
,
1992
), Chaps. 3 and 5, pp.
121
126
, and 256–258.
31.
J. E.
Mahan
,
Physical Vapor Deposition of Thin Films
(
John Wiley & Sons, Inc.
,
New York
,
2000
), Chaps. I, III, V, and VI, pp.
70
71
.
32.
M.
Pirani
and
J.
Yarwood
,
Principles of Vacuum Engineering
(
Reinhold Publishing Corporation
,
New York
,
1961
), Chap. 10.
33.
R. J.
Hill
,
Physical Vapor Deposition
(
Airco Temescal
,
Berkeley, CA
,
1976
), pp.
56
60
.
34.
D. M.
Mattox
,
The Foundations of Vacuum Coating Technology
(
Noyes/William Andrews
,
Norwich, NY
,
2005
).
35.
J. L.
Provo
,
J. Vac. Sci. Technol. A
32
,
041603
(
2014
).
36.
J. L.
Provo
,
J. Vac. Sci. Technol.
12
,
946
(
1975
).
37.
Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis
, edited by
A. W.
Zanderna
,
T. D.
Madey
, and
C. J.
Powell
(
Plenum
,
New York/London
,
1998
), pp.
355
412
.
38.
D. M.
Holloway
,
Appl. Spectrosc.
27
,
95
(
1973
).
39.
E. J.
Fernandez
and
D. M.
Holloway
,
J. Vac. Sci. Technol.
11
,
612
(
1974
).
40.
D. M.
Holloway
,
J. Vac. Sci. Technol.
12
,
392
(
1975
).
41.
D. M.
Holloway
,
R. J.
Antepenko
, and
W. E.
Swartz
, Jr.
,
Appl. Spectrosc.
32
,
106
(
1978
).
42.
M.
Gasgnier
,
J.
Ghys
,
G.
Schiffmacher
,
C. H.
Henry La Blanchetais
,
P. E.
Caro
,
C.
Boulesteix
,
C. H.
Loier
, and
B.
Pardo
,
J. Less-Common Met.
34
,
131
(
1974
).
43.
J.
Dexpert-Ghys
,
C.
Loier
,
C. H.
Henry La Blanchetais
, and
P. E.
Caro
,
J. Less-Common Met.
41
,
105
(
1975
).
44.
K. M.
Mackay
,
Hydrogen Compounds of the Metallic Elements
(
E.&F., Spon Ltd.
,
London
,
1966
).
45.
Metal Hydrides
, edited by
W. M.
Mueller
,
J. P.
Blackledge
, and
G. G.
Libowitz
(
Academic
,
New York
,
1968
).
46.
K. A.
Gschneider and
L.
Eyring
,
Handbook on the Physics and Chemistry of Rare-Earths
(
Elsevier Science B.V.
,
Amsterdam, The Netherlands
,
1995
), Chap. 137, Vol.
20
.
47.
J. L.
Provo
,
J. Vac. Sci. Technol.
16
,
230
(
1979
).
48.
R. A.
Langley
,
J.
Browning
,
S.
Balsley
,
J. C.
Banks
,
B.
Doyle
,
W.
Wampler
, and
L. C.
Beavis
,
J. Vac. Sci. Technol.
19
,
2706
(
2001
).
49.
E. P.
EerNisse
,
J. Appl. Phys.
43
,
1330
(
1972
).
50.
E. P.
EerNisse
,
J. Appl. Phys.
44
,
4482
(
1973
).
51.
H.
Savaloni
,
M. A.
Player
,
E.
Gu
, and
G. V.
Marr
,
Vacuum
43
,
965
(
1992
).
52.
H.
Savaloni
and
M. A.
Player
,
Vacuum
46
,
167
(
1995
).
You do not currently have access to this content.