The authors have examined the nucleation of diindenoperylene (DIP) on SiO2 employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (Ei = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO2 gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

2.
S.
Kowarik
,
A.
Gerlach
, and
F.
Schreiber
,
J. Phys. Condens. Matter
20
,
184005
(
2008
).
3.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
4.
B.
Lucas
,
T.
Trigaud
, and
C.
Videlot-Ackermann
,
Polym. Int.
61
,
374
(
2012
).
5.
A.
Dodabalapur
,
L.
Torsi
, and
H. E.
Katz
,
Science
268
,
270
(
1995
).
6.
H. E.
Katz
,
Chem. Mater.
16
,
4748
(
2004
).
7.
M. M.
Ling
and
Z. N.
Bao
,
Chem. Mater.
16
,
4824
(
2004
).
8.
D. L.
Smith
,
Thin-Film Deposition: Principles and Practice
(
McGraw Hill Professional
,
New York
,
1995
).
9.
L.-Q.
Xia
,
M. E.
Jones
,
N.
Maity
, and
J. R.
Engstrom
,
J. Vac. Sci. Technol. A
13
,
2651
(
1995
).
10.
S. E.
Roadman
,
N.
Maity
,
J. N.
Carter
, and
J. R.
Engstrom
,
J. Vac. Sci. Technol. A
16
,
3423
(
1998
).
11.
L.
Casalis
,
M. F.
Danisman
,
B.
Nickel
,
G.
Bracco
,
T.
Toccoli
,
S.
Iannotta
, and
G.
Scoles
,
Phys. Rev. Lett.
90
,
206101
(
2003
).
12.
M. F.
Danisman
,
L.
Casalis
, and
G.
Scoles
,
Phys. Rev. B
72
,
085404
(
2005
).
13.
Y.
Wu
,
T.
Toccoli
,
N.
Koch
,
E.
Iacob
,
A.
Pallaoro
,
P.
Rudolf
, and
S.
Iannotta
,
Phys Rev. Lett.
98
,
076601
(
2007
);
[PubMed]
S.
Gottardi
,
T.
Toccoli
,
Y.
Wu
,
S.
Iannotta
, and
P.
Rudolf
,
Chem. Commun.
50
,
7694
(
2014
).
14.
A. S.
Killampalli
,
T. W.
Schroeder
, and
J. R.
Engstrom
,
Appl. Phys. Lett.
87
,
033110
(
2005
).
15.
A. S.
Killampalli
and
J. R.
Engstrom
,
Appl. Phys. Lett.
88
,
143125
(
2006
).
16.
S.
Hong
,
A.
Amassian
,
A. R.
Woll
,
S.
Bhargava
,
J. D.
Ferguson
,
G. G.
Malliaras
,
J. D.
Brock
, and
J. R.
Engstrom
,
Appl. Phys. Lett.
92
,
253304
(
2008
).
17.
A.
Amassian
,
V.
Pozdin
,
T. V.
Desai
,
S.
Hong
,
A. R.
Woll
,
J. D.
Ferguson
,
J. D.
Brock
,
G. G.
Malliarias
, and
J. R.
Engstrom
,
J. Mater. Chem.
19
,
5580
(
2009
).
18.
A.
Amassian
,
T. V.
Desai
,
S.
Kowarik
,
S.
Hong
,
A. R.
Woll
,
G. G.
Malliaras
,
F.
Schreiber
, and
J. R.
Engstrom
,
J. Chem. Phys.
130
,
124701
(
2009
).
19.
J. E.
Goose
,
A. S.
Killampalli
,
P.
Clancy
, and
J. R.
Engstrom
,
J. Phys. Chem. C
113
,
6068
(
2009
).
20.
T. V.
Desai
,
A. R.
Woll
,
F.
Schreiber
, and
J. R.
Engstrom
,
J. Phys. Chem. C
114
,
20120
(
2010
).
21.
T. V.
Desai
,
S.
Hong
,
A. R.
Woll
,
K. J.
Hughes
,
A. P.
Kaushik
,
P.
Clancy
, and
J. R.
Engstrom
,
J. Chem. Phys.
134
,
224702
(
2011
).
22.
A. R.
Woll
,
T. V.
Desai
, and
J. R.
Engstrom
,
Phys. Rev. B
84
,
075479
(
2011
).
23.
T. V.
Desai
,
E. R.
Kish
,
A. R.
Woll
, and
J. R.
Engstrom
,
J. Phys. Chem. C
115
,
18221
(
2011
).
24.
T. V.
Desai
,
A. R.
Woll
, and
J. R.
Engstrom
,
J. Phys. Chem. C
116
,
12541
(
2012
).
25.
J. A.
Venables
,
G. D. T.
Spiller
, and
M.
Hanbucken
,
Rep. Prog. Phys.
47
,
399
(
1984
).
26.
R.
Ruiz
,
B.
Nickel
,
N.
Koch
,
L. C.
Feldman
,
R. F.
Haglund
,
A.
Kahn
, and
G.
Scoles
,
Phys. Rev. B
67
,
125406
(
2003
).
27.
R.
Ruiz
,
B.
Nickel
,
N.
Koch
,
L. C.
Feldman
,
R. F.
Haglund
,
A.
Kahn
,
F.
Family
, and
G.
Scoles
,
Phys. Rev. Lett.
91
,
136102
(
2003
).
28.
M.
Tejima
,
K.
Kita
,
K.
Kyuno
, and
A.
Toriumi
,
Appl. Phys. Lett.
85
,
3746
(
2004
).
29.
B.
Stadlober
,
U.
Haas
,
H.
Maresch
, and
A.
Haase
,
Phys. Rev. B
74
,
165302
(
2006
).
30.
T. W.
Schroeder
, “Thin film deposition employing supersonic molecular beams: nucleation and growth of silicon, silicon-germanium, and pentacene,” Ph.D. thesis (
Cornell University
,
2004
).
31.
T. V.
Desai
, “In situ real-time studies of organic semiconductor thin film deposition,” Ph.D. thesis (
Cornell University
,
2012
).
32.
See supplementary material at http://dx.doi.org/10.1116/1.4916885 for a comparison of growth rates deduced from AFM and x-ray scattering, and additional results for the nucleation of pentacene.
33.
X. N.
Zhang
,
E.
Barrena
,
D. G.
de Oteyza
, and
H.
Dosch
,
Surf. Sci.
601
,
2420
(
2007
).
34.
C.
Frank
,
J.
Novák
,
R.
Banerjee
,
A.
Gerlach
,
F.
Schreiber
,
A.
Vorobiev
, and
S.
Kowarik
,
Phys. Rev. B
90
,
045410
(
2014
).
35.
F.-J.
Meyer zu Heringdorf
,
M. C.
Reuter
, and
R. M.
Tromp
,
Appl. Phys. A
78
,
787
(
2004
).
36.
S.
Pratontep
,
M.
Brinkmann
,
F.
Nüesch
, and
L.
Zuppiroli
,
Phys. Rev. B
69
,
165201
(
2004
).
37.
S.
Pratontep
,
F.
Nüesch
,
L.
Zuppiroli
, and
M.
Brinkmann
,
Phys. Rev. B
72
,
085211
(
2005
).
38.
See, e.g.,
P.
Clancy
,
Chem. Mater.
23
,
522
(
2011
), and references therein.
39.
S.
Bommel
 et al,
Nat. Commun.
5
,
5388
(
2014
).
40.
J. E.
Goose
and
P.
Clancy
,
J. Phys. Chem. C
111
,
15653
(
2007
).
41.
A. P.
Kaushik
and
P.
Clancy
,
Surf. Sci.
605
,
1185
(
2011
).
42.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
P.
Liljeroth
, and
G.
Meyer
,
Science
325
,
1110
(
2009
).
43.
A.
Al-Mahboob
,
Y.
Fujikawa
,
J. T.
Sadowski
,
T.
Hashizume
, and
T.
Sakurai
,
Phys. Rev. B
82
,
235421
(
2010
).
44.
M. A.
Heinrich
,
J.
Pflaum
,
A. K.
Tripathi
,
W.
Frey
,
M. L.
Steigerwald
, and
T.
Siegrist
,
J. Phys. Chem. C
111
,
18878
(
2007
).
45.
G.
Hlawacek
and
C.
Teichert
,
J. Phys: Condens. Matter
25
,
143202
(
2013
).

Supplementary Material

You do not currently have access to this content.