Hafnium oxide nanofilms were grown with atomic layer deposition on H-terminated Si (001) wafers employing tetrakis dimethyl amino hafnium (TDMA-Hf) and water as precursors. While the number of cycles (30) and the aperture-time for TDMA-Hf (0.08 s) were kept constant, the aperture-time (τH2O) for the oxidant-agent (H2O) was varied from 0 to 0.10 s. The structure of the films was characterized with robust analysis employing angle-resolved x-ray photoelectron spectroscopy. In addition to a ∼1 nm hafnium oxide layer, a hafnium silicate interface layer, also ∼1 nm thick, is formed for τH2O > 0. The incorporation degree of silicon into the interface layer (i.e., the value of 1 − x in HfxSi1−xOy) shows a minimum of 0.32 for τH2O = 0.04 s. By employing the simultaneous method during peak-fitting analysis, it was possible to clearly resolve the contribution from the silicate and from oxide to the O 1s spectra, allowing for the assessment of the oxygen composition of each layer as a function of oxidant aperture time. The uncertainties of the peak areas and on the thickness and composition of the layers were calculated employing a rigorous approach.

1.
P. G.
Mani-González
,
M. O.
Vazquez-Lepe
,
F.
Espinosa-Magaña
, and
A.
Herrera-Gomez
J. Vac. Sci. Technol., A
31
,
010601
(
2013
).
2.
A.
Herrera-Gomez
“Internal Report, Cinvestav-Queretaro,”
2010
, http://www.qro.cinvestav.mx/~aherrera/reportesInternos/fixingShifts.pdf.
3.
J.
Muñoz-Flores
and
A.
Herrera-Gomez
,
J. Electron Spectrosc. Relat. Phenom.
184
,
533
(
2012
).
4.
A.
Herrera-Gomez
,
M.
Bravo-Sanchez
,
O.
Ceballos-Sanchez
, and
M. O.
Vazquez-Lepe
Surf. Interface Anal.
46
,
897
(
2014
).
5.
A.
Herrera-Gomez
,
F. S.
Aguirre-Tostado
,
P. G.
Mani-Gonzalez
,
M.
Vazquez-Lepe
,
A.
Sanchez-Martinez
,
O.
Ceballos-Sanchez
,
R. M.
Wallace
,
G.
Conti
, and
Y.
Uritsky
J. Electron Spectrosc. Relat. Phenom.
184
,
487
(
2011
).
6.
W.
Kern
and
D. A.
Poutinen
RCA Rev.
31
,
187
(
1970
).
7.
The software employed for spectra alignment was AAligner® (www.rdataa.com/aaligner).
8.
The software employed for peak-fitting the XPS data and to calculate the uncertainty on the intensities is AAnalyzer® (rdataa.com/aanalyzer).
9.
A.
Herrera-Gomez
,
M.
Bravo-Sanchez
,
F. S.
Aguirre-Tostado
, and
M. O.
Vazquez-Lepe
.
J. Electron Spectrosc. Relat. Phenom.
189
,
76
(
2013
).
10.
The software employed for calculating the thickness and composition of each layer is XPSGeometry® (rdataa.com/xpsgeometry).
11.
P. R.
Bevington
,
Data Reduction and Error Analysis in the Physical Sciences
(
McGraw-Hill
,
New York
,
1969
).
12.
A.
Herrera-Gomez
“Internal Report, Cinvestav-Queretaro,”
2014
, http://www.qro.cinvestav.mx/~aherrera/reportesInternos/uncertaintiesXPS.pdf.
13.
F. J.
Himpsel
,
F. R.
McFeely
,
A.
Taleb-Ibrahimi
,
J. A.
Yarmoff
, and
G.
Hollinger
Phys. Rev. B
38
,
6084
(
1988
).
14.
O.
Renault
,
D.
Samour
,
J.-F.
Damlencourt
,
D.
Blin
,
F.
Martin
,
S.
Marthon
,
N. T.
Barrett
, and
P.
Besson
Appl. Phys. Lett.
81
,
3627
(
2002
).
15.
M.
Oshima
,
S.
Toyoda
,
T.
Okumura
,
J.
Okabayashi
,
H.
Kumihashira
,
K.
Ono
,
M.
Niwa
,
K.
Usuda
, and
N.
Hirashita
Appl. Phys. Lett.
83
,
2172
(
2003
).
16.
A.
Herrera-Gomez
,
F. S.
Aguirre
,
M. A.
Quevedo-Lopez
,
P. D.
Kirsch
,
M. J.
Kim
, and
R. M.
Wallace
J. Appl. Phys.
104
,
103520
(
2008
).
17.
A.
Herrera-Gomez
, “Internal Report, CINVESTAV-Unidad Queretaro,”
2008
, http://www.qro.cinvestav.mx/~aherrera/reportesInternos/arxpsAnalysisSharpIntefaces.pdf.
18.
M.-T.
Ho
,
Y.
Wang
,
R. T.
Brewer
,
L. S.
Wielunski
,
Y. J.
Chabal
,
N.
Moumen
, and
M.
Boleslawski
Appl. Phys. Lett.
87
,
133103
(
2005
).
You do not currently have access to this content.