The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined Fuchs–Sondheimer surface scattering model and Mayadas–Shatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p = 0.48 and a grain-boundary reflection coefficient of R = 0.26.

1.
J. J.
Thomson
,
Proc. Cambridge Philos. Soc.
11
,
120
(
1901
).
2.
F.
Chen
and
D.
Gardner
,
IEEE Electron Device Lett.
19
,
508
(
1998
).
3.
W.
Steinhögl
,
G.
Schinlder
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
4.
S. H.
Brongersma
 et al.,
IEEE Int. Interconnect Technol. Conf.
2004
,
48
.
5.
W.
Zhang
,
S. H.
Brongersma
,
T.
Clarysse
,
V.
Terzieva
,
E.
Rosseel
,
W.
Vandervorst
, and
K.
Maex
,
J. Vac. Sci. Technol., B
22
,
1830
(
2004
).
6.
S. M.
Rossnagel
and
T. S.
Kuan
,
J. Vac. Sci. Technol,. B
22
,
240
(
2004
).
7.
W.
Steinhögl
,
G.
Schinlder
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
,
J. Appl. Phys.
97
,
023706
(
2005
).
8.
J. J.
Plombon
,
E.
Andideh
,
V. M.
Dubin
, and
J.
Maiz
,
Appl. Phys. Lett.
89
,
113124
(
2006
).
9.
W.
Zhang
,
S. H.
Brongersma
,
Z.
Li
,
D.
Li
,
O.
Richard
, and
K.
Maex
,
J. Appl. Phys.
101
,
063703
(
2007
).
10.
D.
Josell
,
S. H.
Brongersma
, and
Z.
Tőkei
,
Annu. Rev. Mater. Res.
39
,
231
(
2009
).
11.
T.
Sun
,
B.
Yao
,
A.
Warren
,
V.
Kumar
,
S.
Roberts
,
K.
Barmak
, and
K. R.
Coffey
,
J. Vac. Sci. Technol., A
26
,
605
(
2008
).
12.
T.
Sun
,
B.
Yao
,
A.
Warren
,
K.
Barmak
,
M. F.
Toney
,
R. E.
Peale
, and
K. R.
Coffey
,
Phys. Rev. B
79
,
041402
(R) (
2009
).
13.
T.
Sun
,
B.
Yao
,
A. P.
Warren
,
K.
Barmak
,
M. F.
Toney
,
R. E.
Peale
, and
K. R.
Coffey
,
Phys. Rev. B
81
,
155454
(
2010
).
14.
R. L.
Graham
,
G. B.
Alers
,
T.
Mountsier
,
N.
Shamma
,
S.
Dhuey
,
S.
Cabrini
,
R. H.
Geiss
,
D. T.
Read
, and
S.
Peddeti
,
Appl. Phys. Lett.
96
,
042116
(
2010
).
15.
K.
Barmak
,
T.
Sun
, and
K. R.
Coffey
,
Proceedings of the 11th International Workshop on Stress Induced Phenomena, 2010
, edited by
E.
Zschech
,
P. S.
Ho
, and
S.
Ogawa
(
AIP Conf. Proc.
,
Melville, New York
,
2010
), Vol.
1300
, pp.
12
22
.
16.
J. M.
Rickman
and
K.
Barmak
,
J. Appl. Phys.
112
,
013704
(
2012
).
17.
J. M.
Rickman
and
K.
Barmak
,
J. Appl. Phys.
114
,
133703
(
2013
).
18.
K.
Fuchs
,
Math. Proc. Cambridge Philos. Soc.
34
,
100
(
1938
);
19.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
20.
S.
Ranganathan
,
Acta Crystallogr.
21
,
197
(
1966
).
21.
K. J.
Ganesh
,
M.
Kawasaki
,
J. P.
Zhou
, and
P. J.
Ferreira
,
Microsc. Microanal.
16
,
614
(
2010
).
22.
K. J.
Ganesh
,
A. D.
Darbal
,
S.
Rajasekhara
,
G. S.
Rohrer
,
K.
Barmak
, and
P. J.
Ferreira
,
Nanotechnology
23
,
135702
(
2012
).
23.
A. D.
Darbal
 et al,
Microsc. Microanal.
19
,
111
(
2013
).
24.
B.
Yao
and
K. R.
Coffey
,
J. Electron Microsc.
57
,
47
(
2008
).
25.
E. F.
Rauch
,
J.
Portillo
,
S.
Nicolopoulos
,
D.
Bultreys
,
S.
Rouvimov
, and
P.
Moeck
,
Z. Kristallogr.
225
,
103
(
2010
).
26.
R.
Vincent
and
P. A.
Midgley
,
Ultramicroscopy
53
,
271
(
1994
).
27.
P.
Oleynikov
,
S.
Hovmöller
, and
X. D.
Zou
,
Ultramicroscopy
107
,
523
(
2007
).
28.
F. J.
Humphreys
,
J. Mater. Sci.
36
,
3833
(
2001
).
29.
L.
Lu
,
Y.
Shen
,
X.
Chen
,
L.
Qian
, and
K.
Lu
,
Science
304
,
422
(
2004
).
30.
X. H.
Chen
,
L.
Lu
, and
K.
Lu
,
J. Appl. Phys.
102
,
083708
(
2007
).
31.
K.
Lu
,
L.
Lu
, and
S.
Suresh
,
Science
324
,
349
(
2009
).
32.
33.
A.
Sutton
and
R.
Balluffi
,
Interfaces in Crystalline Materials
(
Clarendon
,
Oxford
,
1996
), p.
27
.
34.
B.
Feldman
,
S.
Park
,
M.
Haverty
,
S.
Shankar
, and
S. T.
Dunham
,
Phys. Status Solidi
247
,
1791
(
2010
).
35.
See http://rsb.info.nih.gov/ij/ for the image analysis software provided by the National Institutes of Health.
36.
E. E.
Underwood
,
Quantitative Stereology
(
Reading
,
Massachuttes
,
1970
), p.
4
.
37.
S. I.
Tomkeieff
,
Nature
155
,
24
(
1945
).
38.
J. E.
Hilliard
and
L. R.
Lawson
,
Stereology and Stochastic Geometry
(
Kluwer Academic Publisher
,
Dordecht
,
2003
), pp.
125
172
.
40.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 87th ed. (
CRC
,
Boca Raton
,
2006
), pp.
12
39
.
You do not currently have access to this content.