Copper zinc tin sulfide (CZTS) thin films were synthesized by ex situ sulfidation of Cu-Zn-Sn metal alloy precursor films cosputtered from Cu, Cu-Zn, and Cu-Sn targets onto five different substrate materials: single crystal quartz, fused quartz, sapphire, Pyrex, and soda lime glass (SLG). Cosputtered precursor films, which were found to consist of Cu, Zn, and Sn metals and Cu6.26Sn5 ordered alloys, were sulfidized between 100 and 600 °C, corresponding to an S pressure range of 0.051–36 Torr. While CZTS forms at temperatures as low as 300 °C on all substrates, the film's phase composition is dominated by binary metal sulfides between 300 and 400 °C. Significant phase composition variations among films synthesized on different substrates begin to emerge at 400 °C. Films grown on SLG are nearly phase pure CZTS by 500 °C, with small amounts of ZnS. In contrast, films deposited on all other substrates persistently contain significant amounts of impurity phases such as SnS2 and Cu4Sn7S16 until the sulfidation temperature is increased to 600 °C. Significant grain growth also begins between 500 and 600 °C. At 600 °C, CZTS films synthesized on SLG were found to have significantly larger grains than films grown on any of the other substrates. These results demonstrate that CZTS phase purity and grain size, properties that may affect solar cell performance, are affected by impurity diffusion from the SLG substrate, further emphasizing the importance of selecting appropriate substrates.

1.
D. B.
Mitzi
,
O.
Gunawan
,
T. K.
Todorov
,
K.
Wang
, and
S.
Guha
,
Sol. Energy Mater. Sol. Cells
95
,
1421
(
2011
).
2.
H.
Katagiri
,
N.
Sasaguchi
,
S.
Hando
,
S.
Hoshino
,
J.
Ohashi
, and
T.
Yokota
,
Sol. Energy Mater. Sol. Cells
49
,
407
(
1997
).
3.
H.
Katagiri
,
Thin Solid Films
480–481
,
426
(
2005
).
4.
T.
Todorov
,
O.
Gunawan
,
S. J.
Chey
,
T. Goislard de
Monsabert
,
A.
Prabhakar
, and
D. B.
Mitzi
,
Thin Solid Films
519
,
7378
(
2011
).
5.
N.
Vora
,
J.
Blackburn
,
I.
Repins
,
C.
Beall
,
B.
To
,
J.
Pankow
,
G.
Teeter
,
M.
Young
, and
R.
Noufi
,
J. Vac. Sci. Technol., A
30
,
051201
(
2012
).
6.
C. A.
Wolden
,
J.
Kurtin
,
J. B.
Baxter
,
I.
Repins
,
S. E.
Shaheen
,
J. T.
Torvik
,
A. A.
Rockett
,
V. M.
Fthenakis
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
29
,
030801
(
2011
).
7.
K.
Ito
and
T.
Nakazawa
,
Jpn. J. Appl. Phys., Part 1
27
,
2094
(
1988
).
8.
N.
Nakayama
and
K.
Ito
,
Appl. Surf. Sci.
92
,
171
(
1996
).
9.
M. T.
Winkler
,
W.
Wang
,
O.
Gunawan
,
H.
Hovel
,
T.
Todorov
, and
D. B.
Mitzi
,
Energy Environ. Sci.
7
,
1029
(
2014
).
10.
B.
Shin
,
O.
Gunawan
,
Y.
Zhu
,
N. A.
Bojarczuk
,
S. J.
Chey
, and
S.
Guha
,
Prog. Photovoltaics: Res. Appl.
21
,
72
(
2013
).
11.
A.
Chirilă
 et al,
Nat. Mater.
12
,
1107
(
2013
).
12.
Q.
Guo
,
H. W.
Hillhouse
, and
R.
Agrawal
,
J. Am. Chem. Soc.
131
,
11672
(
2009
).
13.
Q.
Guo
,
G. M.
Ford
,
W.-C.
Yang
,
B. C.
Walker
,
E. A.
Stach
,
H. W.
Hillhouse
, and
R.
Agrawal
,
J. Am. Chem. Soc.
132
,
17384
(
2010
).
14.
C.
Steinhagen
,
M. G.
Panthani
,
V.
Akhavan
,
B.
Goodfellow
,
B.
Koo
, and
B. A.
Korgel
,
J. Am. Chem. Soc.
131
,
12554
(
2009
).
15.
S. C.
Riha
,
B. A.
Parkinson
, and
A. L.
Prieto
,
J. Am. Chem. Soc.
131
,
12054
(
2009
).
16.
A.
Khare
,
A. W.
Wills
,
L. M.
Ammerman
,
D. J.
Norris
, and
E. S.
Aydil
,
Chem. Commun.
47
,
11721
(
2011
).
17.
B. D.
Chernomordik
,
A. E.
Béland
,
D. D.
Deng
,
L. F.
Francis
, and
E. S.
Aydil
,
Chem. Mater.
26
,
3191
(
2014
).
18.
B. D.
Chernomordik
,
A. E.
Béland
,
N.
Trejo
,
A.
Gunawan
,
D. D.
Deng
,
K. A.
Mkhoyan
, and
E. S.
Aydil
,
J. Mater. Chem. A
2
,
10389
(
2014
).
19.
T. K.
Todorov
,
K. B.
Reuter
, and
D. B.
Mitzi
,
Adv. Mater.
22
,
E156
(
2010
).
20.
T. R.
Knutson
,
P. J.
Hanson
,
E. S.
Aydil
, and
R. L.
Penn
,
Chem. Commun.
50
,
5902
(
2014
).
21.
I.
Repins
 et al,
Sol. Energy Mater. Sol. Cells
101
,
154
(
2012
).
22.
T.
Ericson
,
J. J.
Scragg
,
T.
Kubart
,
T.
Törndahl
, and
C.
Platzer-Björkman
,
Thin Solid Films
520
,
7093
(
2012
).
23.
H.
Katagiri
,
N.
Ishigaki
,
T.
Ishida
, and
K.
Saito
,
Jpn. J. Appl. Phys., Part 1
40
,
500
(
2001
).
24.
A.-J.
Cheng
,
M.
Manno
,
A.
Khare
,
C.
Leighton
,
S.
Campbell
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
29
,
051203
(
2011
).
25.
H.
Katagiri
,
K.
Jimbo
,
W. S.
Maw
,
K.
Oishi
,
M.
Yamazaki
,
H.
Araki
, and
A.
Takeuchi
,
Thin Solid Films
517
,
2455
(
2009
).
26.
P. A.
Fernandes
,
P. M. P.
Salomé
,
A. F. da
Cunha
, and
B.-A.
Schubert
,
Thin Solid Films
519
,
7382
(
2011
).
27.
J. J.
Scragg
,
D. M.
Berg
, and
P. J.
Dale
,
J. Electroanal. Chem.
646
,
52
(
2010
).
28.
R.
Schurr
 et al,
Thin Solid Films
517
,
2465
(
2009
).
29.
A.
Fairbrother
,
X.
Fontané
,
V.
Izquierdo-Roca
,
M.
Espíndola-Rodríguez
,
S.
López-Marino
,
M.
Placidi
,
L.
Calvo-Barrio
,
A.
Pérez-Rodríguez
, and
E.
Saucedo
,
Sol. Energy Mater. Sol. Cells
112
,
97
(
2013
).
30.
J.
Han
,
S. W.
Shin
,
M. G.
Gang
,
J. H.
Kim
, and
J. Y.
Lee
,
Nanotechnology
24
,
095706
(
2013
).
31.
A.
Weber
,
R.
Mainz
, and
H. W.
Schock
,
J. Appl. Phys.
107
,
013516
(
2010
).
32.
A.
Redinger
,
D. M.
Berg
,
P. J.
Dale
, and
S.
Siebentritt
,
J. Am. Chem. Soc.
133
,
3320
(
2011
).
33.
J. J.
Scragg
,
T.
Ericson
,
T.
Kubart
,
M.
Edoff
, and
C.
Platzer-Björkman
,
Chem. Mater.
23
,
4625
(
2011
).
34.
C.
Platzer-Björkman
,
J. J.
Scragg
,
H.
Flammersberger
,
T.
Kubart
, and
M.
Edoff
,
Sol. Energy Mater. Sol. Cells
98
,
110
(
2012
).
35.
W. M. Oo
Hliang
,
J. L.
Johnson
,
A.
Bhatia
,
E. A.
Lund
,
M. M.
Nowell
, and
M. A.
Scarpulla
,
J. Electron. Mater.
40
,
2214
(
2011
).
36.
M.
Johnson
,
S. V.
Baryshev
,
E.
Thimsen
,
M.
Manno
,
X.
Zhang
,
I. V.
Veryovkin
,
C.
Leighton
, and
E. S.
Aydil
,
Energy Environ. Sci.
7
,
1931
(
2014
).
37.
C. M.
Sutter-Fella
,
J. A.
Stueckelberger
,
H.
Hagendorfer
,
F. La
Mattina
,
L.
Kranz
,
S.
Nishiwaki
,
R.
Alexander
,
Y. E.
Romanyuk
, and
A. N.
Tiwari
,
Chem. Mater.
26
,
1420
(
2014
).
38.
See supplementary material at http://dx.doi.org/10.1116/1.4901091 for additional XRD, Raman and Auger electron spectroscopies, and elemental composition data as well as additional scanning electron micrographs.
39.
P. A.
Fernandes
,
P. M. P.
Salomé
, and
A. F. A. da
Cunha
,
Thin Solid Films
517
,
2519
(
2009
).
40.
H.
Yoo
and
J. H.
Kim
,
Thin Solid Films
518
,
6567
(
2010
).
41.
K.
Wang
,
O.
Gunawan
,
T.
Todorov
,
B.
Shin
,
S. J.
Chey
,
N. A.
Bojarczuk
,
D. B.
Mitzi
, and
S.
Guha
,
Appl. Phys. Lett.
97
,
143508
(
2010
).
42.
P. A.
Fernandes
,
P. M. P.
Salomé
, and
A. F. A. da
Cunha
,
J. Phys. D: Appl. Phys.
43
,
215403
(
2010
).
43.
Y. C.
Cheng
,
C. Q.
Jin
,
F.
Gao
,
X. L.
Wu
,
W.
Zhong
,
S. H.
Li
, and
P. K.
Chu
,
J. Appl. Phys.
106
,
123505
(
2009
).
44.
C.
Wang
,
K.
Tang
,
Q.
Yang
, and
Y.
Qian
,
Chem. Phys. Lett.
357
,
371
(
2002
).
45.
C. G.
Munce
,
G. K.
Parker
,
S. A.
Holt
, and
G. A.
Hope
,
Colloids Surf., A
295
,
152
(
2007
).
46.
I. D.
Olekseyuk
,
I. V.
Dudchak
, and
L. V.
Piskach
,
J. Alloys Compd.
368
,
135
(
2004
).
47.
A.
Khare
,
B.
Himmetoglu
,
M.
Johnson
,
D. J.
Norris
,
M.
Cococcioni
, and
E. S.
Aydil
,
J. Appl. Phys.
111
,
083707
(
2012
).
48.
E.
Thimsen
,
S. V.
Baryshev
,
A. B. F.
Martinson
,
J. W.
Elam
,
I. V.
Veryovkin
, and
M. J.
Pellin
,
Chem. Mater.
25
,
313
(
2013
).
49.
J.
Ge
,
W.
Yu
,
H.
Cao
,
J.
Jiang
,
J.
Ma
,
L.
Yang
,
P.
Yang
,
Z.
Hu
, and
J.
Chu
,
Phys. Status Solidi A
209
,
1493
(
2012
).
50.
A.
Nagaoka
,
H.
Miyake
,
T.
Taniyama
,
K.
Kakimoto
,
Y.
Nose
,
M. A.
Scarpulla
, and
K.
Yoshino
,
Appl. Phys. Lett.
104
,
152101
(
2014
).

Supplementary Material

You do not currently have access to this content.