In pure NF3 plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF3 pressure of 2 Pa were the highest and it decreased with an increase in NF3 pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF3/Ar gas pressure of 2 Pa and addition of Ar to NF3 plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the number of pillars decreased with an increase in the Ar-concentration in the NF3/Ar mixture gas. The roughness factor (Ra) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF3 gas. Both the Ra values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF3/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.

You do not currently have access to this content.