Ga2O3 dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga2O3 thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900 °C for 30 min under N2 ambient, films crystallized into β-form monoclinic structure. Electrical properties of the β-Ga2O3 thin films were then investigated by fabricating and characterizing Al/β-Ga2O3/p-Si metal–oxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Qeff) were calculated from the capacitance–voltage (C-V) curves using the flat-band voltage shift and were found as 2.6 × 1012, 1.9 × 1012, and 2.5 × 1012 cm−2 for samples annealed at 700, 800, and 900 °C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO2 layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900 °C, and by the Frenkel–Poole emission model for film annealed at 800 °C. Leakage current density was found to improve with annealing temperature. β-Ga2O3 thin film annealed at 800 °C exhibited the highest reverse breakdown field value.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
G. A.
Battiston
,
R.
Gerbasi
,
M.
Porchia
,
R.
Bertoncello
, and
F.
Caccavale
,
Thin Solid Films
279
,
115
(
1996
).
3.
C. T.
Lee
and
J. T.
Yan
,
Sens. Actuators B
147
,
723
(
2010
).
4.
F. K.
Shan
,
G. X.
Liu
,
W. J.
Lee
,
G. H.
Lee
,
I. S.
Kim
, and
B. C.
Shin
,
J. Appl. Phys.
98
,
023504
(
2005
).
5.
K.
Shimamura
,
E. G.
Villora
,
K.
Domen
,
K.
Yui
,
K.
Aoki
, and
N.
Ichinose
,
Jpn. J. Appl. Phys.
44
,
L7
(
2005
).
6.
A. A.
Dakhel
,
Microelectron. Reliab.
52
,
1050
(
2012
).
7.
E. G.
Villora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
,
J. Cryst. Growth
270
,
420
(
2004
).
8.
Y.
Zhano
,
J.
Yan
,
Q.
Li
,
L.
Zhang
, and
T.
Li
,
Physica B
406
,
3079
(
2011
).
9.
S. A.
Lee
,
J. Y.
Hwang
,
J. P.
Kim
,
S. Y.
Jeong
, and
C. R.
Cho
,
Appl. Phys. Lett.
89
,
182906
(
2006
).
10.
Y.
Kokubun
,
K.
Miura
,
F.
Endo
, and
S.
Nakagomi
,
Appl. Phys. Lett.
90
,
031912
(
2007
).
11.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
,
Jpn. J. Appl. Phys.
46
,
7217
(
2007
).
12.
O.
Bierwagen
,
M. E.
White
,
M. Y.
Tsai
, and
J. S.
Speck
,
Molecular Beam Epitaxy: From Research to Mass Production
, edited by
M.
Henini
(
Elsevier Science
,
2012
), p.
347
.
13.
H. W.
Kim
,
N. H.
Kim
, and
C.
Lee
,
J. Mater. Sci.
39
,
3461
(
2004
).
14.
M. F.
Al-Kuhaili
,
S. M. A.
Durrani
, and
E. E.
Khawaja
,
Appl. Phys. Lett.
83
,
4533
(
2003
).
15.
G. X.
Liu
,
F. K.
Shan
,
W. J.
Lee
,
B. C.
Shin
,
S.
Kim
,
H. S.
Kim
, and
C. R.
Cho
,
Integr. Ferroelectr.
94
,
11
(
2007
).
16.
N. J.
Seong
,
S. G.
Yoon
, and
W. J.
Lee
,
Appl. Phys. Lett.
87
,
082909
(
2005
).
17.
G. X.
Liu
,
F. K.
Shan
,
W. J.
Lee
,
G. H.
Lee
,
I. S.
Kim
, and
B. C.
Shin
,
Integr. Ferroelectr.
85
,
155
(
2006
).
18.
I.
Donmez
,
C.
Ozgit-Akgun
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
31
,
01A110
(
2013
).
19.
S. A.
Lee
,
J. Y.
Hwang
,
J. P.
Kim
,
C. R.
Cho
,
W. J.
Lee
, and
S. Y.
Jeong
,
J. Korean Phys. Soc.
47
,
S292
(
2005
).
20.
F. K.
Shan
,
G. X.
Liu
,
W. J.
Lee
,
G. H.
Lee
,
I. S.
Kim
, and
B. C.
Shin
,
Integr. Ferroelectr.
80
,
197
(
2006
).
21.
R. S.
Muller
and
T. I.
Kamins
,
Device Electronics for Integrated Circuits
, 2nd ed. (
Wiley
,
New York
,
1986
).
22.
W.
Rzodkiewicz
and
A.
Panas
,
Acta Phys. Pol. A
116
,
S92
(
2009
).
23.
N.
Kitamura
,
K.
Fukumi
,
J.
Nishii
, and
N.
Ohno
,
J. Appl. Phys.
101
,
123533
(
2007
).
24.
K.
Taniguchi
,
M.
Tanaka
, and
C.
Hamaguchi
,
J. Appl. Phys.
67
,
2195
(
1990
).
25.
W.
Yang
,
J.
Marino
,
A.
Monson
, and
C. A.
Wolden
,
Semicond. Sci. Technol.
21
,
1573
(
2006
).
27.
H.
Altuntas
,
I.
Donmez
,
C.
Ozgit-Akgun
, and
N.
Biyikli
,
J. Alloy Compd.
593
,
190
(
2014
).
28.
S. M.
Sze
, in
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
), Chap. 6.
29.
J. Y.
Tewg
,
Y.
Kuo
,
J.
Lu
, and
T.
Wu
,
J. Electrochem. Soc.
151
,
F59
(
2004
).
30.
S.
Chakraborty
,
M. K.
Bera
,
S.
Bhattacharya
, and
C. K.
Maiti
,
Microelectron. Eng.
81
,
188
(
2005
).
31.
J. S.
Lee
,
S. J.
Chang
,
J. F.
Chen
,
S. C.
Sun
,
C. H.
Liu
, and
U. H.
Liaw
,
Mater. Chem. Phys.
77
,
242
(
2003
).
32.
C. S.
Chang
,
T. P.
Liu
, and
T. B.
Wu
,
J. Appl. Phys.
88
,
7242
(
2000
).
33.
R. M.
Ayub
,
S.
Norhafizah
,
A. H.
Azman
,
U.
Hashim
, and
T.
Adam
,
J. Appl. Sci. Res.
9
,
3451
(
2013
).
34.
Y. H.
Wong
and
K. Y.
Cheong
,
J. Electrochem. Soc.
158
,
H1270
(
2011
).
35.
B. H.
Lee
,
Y.
Jeon
,
K.
Zawadzki
,
W. J.
Qi
, and
J.
Lee
,
Appl. Phys. Lett.
74
,
3143
(
1999
).
36.
E. D.
Readinger
,
S. D.
Wolter
,
D. L.
Waltemyer
,
J. M.
Delucca
,
S. E.
Mohney
,
B. I.
Prenitzer
,
L. A.
Giannuzzi
, and
R. J.
Molnar
,
J. Electron. Mater.
28
,
257
(
1999
).
37.
Y.
Zhou
 et al.,
Solid State Electron.
52
,
756
(
2008
).
38.
L. M.
Lin
,
Y.
Luo
,
P. T.
Lai
, and
K. M.
Lau
,
Thin Solid Films
515
,
2111
(
2006
).
39.
H.
Kim
,
S.-J.
Park
, and
H.
Hwang
,
J. Vac. Sci. Technol. B
19
,
579
(
2001
).
40.
M.
Passlack
 et al.,
J. Appl. Phys.
77
,
686
(
1995
).
You do not currently have access to this content.