Present practice in plasma-assisted semiconductor manufacturing specifies recipes in terms of inputs such as gas flow rates, power and pressure. However, ostensibly identical chambers running identical recipes may produce very different results. Extensive chamber matching, i.e., initial iterative, empirical tuning of the process recipe, which entails time-consuming, ex situ statistical analysis of process metrics such as etch depth, uniformity, anisotropy and selectivity, is required to ensure acceptable results. Once matched, chambers are run open loop and are thus sensitive to disturbances such as actuator drift, wall seasoning and substrate loading, which may impact negatively on process reproducibility. An alternative approach, which may obviate the need for chamber matching and reduce the sensitivity of process metrics to exogenous disturbances, would be to specify a recipe in terms of quantities such as active species densities, and to regulate these in real time by adjusting the inputs with a suitable control algorithm. In this work, real time control of an electron cyclotron resonance O2/Ar plasma used for photoresist ashing has been implemented. The design of elementary, model-based algorithms for the control of the argon 750 and oxygen 844 line intensities measured by optical emission spectroscopy is described. Fluorination of the chamber walls by means of an SF6 plasma prior to ashing inhibits wall recombination of oxygen radicals resulting in an approximately 20% increase in ash rate in the open loop case. However, closed loop control almost completely attenuates the effect of fluorination, thus demonstrating the efficacy of the control algorithms in ensuring a reproducible ash rate in the face of a wall disturbance.

1.
G.
Cunge
,
D.
Vempaire
,
R.
Ramos
,
M.
Touzeau
,
O.
Joubert
,
P.
Bodard
, and
N.
Sadeghi
,
Plasma Sources Sci. Technol.
19
,
034017
(
2010
).
2.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol., A
31
,
050825
(
2013
).
3.
S.
Banna
,
A.
Agarwal
,
G.
Cunge
,
M.
Darnon
,
E.
Pargon
, and
O.
Joubert
,
J. Vac. Sci. Technol., A
30
,
040801
(
2012
).
4.
D. J.
Economou
,
J. Vac. Sci. Technol., A
31
,
050823
(
2013
).
5.
M.
Hori
,
H.
Kondo
, and
M.
Hiramatsu
,
J. Phys. D: Appl. Phys.
44
,
174027
(
2011
).
6.
G. A.
Curley
,
L.
Gatilova
,
S.
Guilet
,
S.
Bouchoule
,
G. S.
Gogna
,
N.
Sirse
,
S.
Karkari
, and
J. P.
Booth
,
J. Vac. Sci. Technol., A
28
,
360
(
2010
).
7.
S.
Kechkar
,
P.
Swift
,
J.
Conway
,
M.
Turner
, and
S.
Daniels
,
Plasma Sources Sci. Technol.
22
,
045013
(
2013
).
8.
M.
Schaepkens
,
R. C. M.
Bosch
,
T. E. F. M.
Standaert
,
G. S.
Oehrlein
, and
J. M.
Cook
,
J. Vac. Sci. Technol., A
16
,
2099
(
1998
).
9.
S.
Tinck
,
W.
Boullart
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
20
,
045012
(
2011
).
10.
A.
Agarwal
and
M. J.
Kushner
,
J. Vac. Sci. Technol., A
26
,
498
(
2008
).
11.
K. J.
McLaughlin
,
T. F.
Edgar
, and
I.
Trachtenberg
,
IEEE Control Syst. Mag.
11
,
3
(
1991
).
12.
B. A.
Rashap
 et al,
IEEE Trans. Semicond. Manuf.
8
,
286
(
1995
).
13.
T. J.
Knight
,
D. W.
Greve
,
X.
Cheng
, and
B. H.
Krogh
,
IEEE Trans. Semicond. Manuf.
10
,
137
(
1997
).
14.
P. I.
Klimecky
,
J. W.
Grizzle
, and
F. L.
Terry
, Jr.
,
J. Vac. Sci. Technol., A
21
,
706
(
2003
).
15.
H.
Yamamoto
,
H.
Kuroda
,
M.
Ito
,
T.
Ohta
,
K.
Takeda
,
K.
Ishikawa
,
H.
Kondo
,
M.
Sekine
, and
M.
Hori
,
Jpn. J. Appl. Phys., Part 1
51
,
016202
(
2012
).
16.
M.
Hori
and
T.
Goto
,
Appl. Surf. Sci.
253
,
6657
(
2007
).
17.
S.
Takahashi
 et al,
Jpn. J. Appl. Phys., Part 1
51
,
076502
(
2012
).
18.
S.
Samukawa
 et al,
J. Phys. D: Appl. Phys.
45
,
253001
(
2012
).
19.
O.
Joubert
,
J.
Pelletier
, and
Y.
Arnal
,
J. Appl. Phys.
65
,
5096
(
1989
).
20.
K.
Takechi
and
M. A.
Lieberman
,
J. Appl. Phys.
89
,
869
(
2001
).
21.
J. T.
Gudmundsson
and
E. G.
Thorsteinsson
,
Plasma Sources Sci. Technol.
16
,
399
(
2007
).
22.
J. P.
Booth
and
N.
Sadeghi
,
J. Appl. Phys.
70
,
611
(
1991
).
23.
J.
Conway
,
S.
Kechkar
,
C.
Gaman
,
M. M.
Turner
, and
S.
Daniels
,
Plasma Sources Sci. Technol.
22
,
045004
(
2013
).
24.
H. M.
Katsch
,
A.
Tewes
,
E.
Quandt
,
A.
Goehlich
,
T.
Kawetzki
, and
H. F.
Döbele
,
J. Appl. Phys.
88
,
6232
(
2000
).
25.
B.
Keville
,
Y.
Zhang
,
C.
Gaman
,
A. M.
Holohan
,
S.
Daniels
, and
M. M.
Turner
,
J. Vac. Sci. Technol., A
31
,
031302
(
2013
).
26.
M.
Morari
and
E.
Zafiriou
,
Robust Process Control
(
Prentice-Hall
,
Engelwood Cliffs, NJ
,
1989
).
27.
D. E.
Seborg
,
T. F.
Edgar
, and
D. A.
Mellichamp
,
Process Dynamics and Control
, 2nd ed. (
Wiley
,
New York
,
1989
).
28.
S. P.
Bhattacharyya
,
A.
Datta
, and
L. H.
Keel
,
Linear Control Theory: Structure, Robustness, and Optimization
(
CRC
,
Boca Raton, FL
,
2010
).
You do not currently have access to this content.