A major class of resistive memory devices is based on transition metal oxides, where mobile oxygen vacancies allow these devices to exhibit multiple resistance states. Ta2O5 based devices in particular have recently demonstrated impressive endurance and forming-free results. Deposition of substoichiometric Ta2Ox (x < 5) films is a critical process in order to produce the required oxygen vacancies in these devices. This paper describes a physical vapor deposition (PVD) reactive sputtering process to deposit substoichiometric Ta2Ox films. The desired film stoichiometry is achieved by feedback control of the oxygen partial pressure in the PVD chamber. A calibration procedure based on Rutherford backscattering spectroscopy is described for locating the optimum oxygen partial pressure.

1.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature Lett.
453
,
80
(
2008
).
2.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater.
21
,
2632
(
2009
).
3.
J.
Hutchby
and
M.
Garner
, in
International Technology Roadmap for Semiconductors, Assessment of Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting
(
2010
), p.
42
.
4.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviay
,
P.
Mazumder
, and
W.
Lu
,
Nano Lett.
10
,
1297
(
2010
).
5.
M. J.
Lee
 et al.,
Nature Mater.
10
,
625
(
2011
).
6.
J. J.
Yang
,
M. X.
Zhang
,
J. P.
Strachan
,
F.
Miao
,
M. D.
Picket
,
R. D.
Kelley
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Appl. Phys. Lett.
97
,
232102
(
2010
).
7.
H. Y.
Lee
 et al.,
IEEE Int. Electron Dev. Meet.
2008
,
297
.
8.
Z.
Wei
 et al.,
IEEE Int. Electron Dev. Meet.
2008
,
293
.
9.
F.
Miao
,
W.
Yi
,
I.
Goldfarb
,
J. J.
Yang
,
M.-X.
Zhang
,
M. D.
Pickett
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
ACS Nano
6
,
2312
(
2012
).
10.
S.
Kadlec
,
J.
Musil
, and
H.
Vyskocil
,
J. Phys. D: Appl. Phys.
19
,
L187
(
1986
).
11.
S.
Berg
,
H.-O.
Blom
,
T.
Larsson
, and
C.
Nender
,
J. Vac. Sci. Technol. A
5
,
202
(
1987
).
12.
T.
Larsson
,
H.
Blom
,
C.
Nender
, and
S.
Berg
,
J. Vac. Sci. Technol. A
6
,
1832
(
1988
).
13.
A.
Okamoto
and
T.
Serikawa
,
Thin Solid Films
137
,
143
(
1986
).
14.
J. J.
Yang
 et al.,
Appl. Phys. Lett.
100
,
113501
(
2012
).
15.
N.
Martin
,
R.
Sanjines
,
J.
Takadoum
, and
F.
Levy
,
Surf. Coat. Technol.
142–144
,
615
(
2001
).
16.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
,
Thin Solid Films
491
,
1
(
2005
).
17.
A. F.
Hmiel
,
J. Vac. Sci. Technol. A
3
,
592
(
1985
).
18.
W. D.
Sproul
,
Surf. Coat. Technol.
33
,
73
(
1987
).
19.
S.
Schiller
,
G.
Beister
, and
W.
Sieber
,
Thin Solid Films
,
111
,
259
(
1984
).
20.
S.
Schiller
,
U.
Heisig
,
K.
Steinfelder
,
J.
Strumpfel
, and
W.
Sieber
,
Thin Solid Films
63
,
369
(
1979
).
21.
R.
Dannenberg
and
P.
Greene
,
Thin Solid Films
360
,
122
(
2000
).
22.
V.
Bellido-Gonzalez
,
B.
Daniel
,
J.
Counsell
, and
D.
Monaghan
,
Thin Solid Films
502
,
34
(
2006
).
23.
J. P.
Strachan
,
G.
Medeiros-Ribiero
,
J. J.
Yang
,
M.-X.
Zhang
,
F.
Miao
,
I.
Goldfarb
,
M.
Holt
,
V.
Rose
, and
R. S.
Williams
,
Appl. Phys. Lett.
98
,
242114
(
2011
).
24.
M. J.
Marinella
,
J. E.
Stevens
,
P. R.
Mickel
,
D. R.
Hughart
, and
A. J.
Lohn
,
ECS Trans.
58
,
59
(
2013
).
25.
X.
Wu
 et al.,
Appl. Phys. Lett.
99
,
133504
(
2011
).
26.
C.-I.
Hsieh.
J.-H.
Jao
,
W.-C.
Chen
,
C.-R.
Wu
, and
N.-T.
Shih
,
Int. Symp. VLSI Tech., Syst. Appl.
2011
,
1
.
27.
A. J.
Lohn
,
P. R.
Mickel
, and
M. J.
Marinella
,
Appl. Phys. Lett.
103
,
173503
(
2013
).
28.
N.
Raghavan
,
A.
Fantini
,
R.
Degraeve
,
P. J.
Roussel
,
L.
Goux
,
B.
Govoreanu
,
D. J.
Wouters
,
G.
Groeseneken
, and
M.
Jurczak
,
Microelectron. Eng.
109
,
177
(
2013
).
You do not currently have access to this content.