The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O3 attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

1.
S.
Iijima
,
Nature
354
,
56
(
1991
).
2.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
3.
Z.
Xiong
,
Y. S.
Yun
, and
H.
Jin
,
Materials
6
,
1138
(
2013
).
4.
H. S.
Oktaviano
,
K.
Yamada
, and
K.
Waki
,
J. Mater. Chem.
22
,
25167
(
2012
).
5.
Á.
Kukovecz
,
T.
Kanyó
,
Z.
Kónya
, and
I.
Kiricsi
,
Carbon
43
,
994
(
2005
).
6.
A.
Krasheninnikov
,
K.
Nordlund
, and
J.
Keinonen
,
Phys. Rev. B
65
,
165423
(
2002
).
7.
K.
Balasubramanian
and
M.
Burghard
,
Small
1
,
180
(
2005
).
8.
A.
Star
,
Y.
Liu
,
K.
Grant
,
L.
Ridvan
,
J. F.
Stoddart
,
D. W.
Steuerman
,
M. R.
Diehl
,
A.
Boukai
, and
J. R.
Heath
,
Macromolecules
36
,
553
(
2003
).
9.
K. A.
Wepasnick
,
B. A.
Smith
,
J. L.
Bitter
, and
D. H.
Fairbrother
,
Anal. Bioanal. Chem.
396
,
1003
(
2010
).
10.
V.
Datsyuk
,
M.
Kalyva
,
K.
Papagelis
,
J.
Parthenios
,
D.
Tasis
,
A.
Siokou
,
I.
Kallitsis
, and
C.
Galiotis
,
Carbon
46
,
833
(
2008
).
11.
N. P.
Zschoerper
,
V.
Katzenmaier
,
U.
Vohrer
,
M.
Haupt
,
C.
Oehr
, and
T.
Hirth
,
Carbon
47
,
2174
(
2009
).
12.
A.
Gromov
,
S.
Dittmer
,
J.
Svensson
,
O. A.
Nerushev
,
S. A.
Perez-García
,
L.
Licea-Jiménez
,
R.
Rychwalski
, and
E. E. B.
Campbell
,
J. Mater. Chem.
15
,
3334
(
2005
).
13.
K.
Peng
,
L.
Liu
,
H.
Li
,
H.
Meyer
, and
Z.
Zhang
,
Carbon
49
,
70
(
2011
).
14.
D. B.
Mawhinney
,
V.
Naumenko
,
A.
Kuznetsova
,
J. T.
Yates
,
J.
Liu
, and
R.
Smalley
,
J. Am. Chem. Soc.
122
,
2383
(
2000
).
15.
Z.
Chen
,
K. J.
Ziegler
,
J.
Shaver
,
R. H.
Hauge
, and
R. E.
Smalley
,
J. Phys. Chem. B
110
,
11624
(
2006
).
16.
H.
Liu
,
Y.
Zhang
,
R.
Li
,
X.
Sun
,
S.
Désilets
,
H.
Abou-Rachid
,
M.
Jaidann
, and
L.-S.
Lussier
,
Carbon
48
,
1498
(
2010
).
17.
J.
Liu
,
H.
Liu
,
Y.
Zhang
,
R.
Li
,
G.
Liang
,
M.
Gauthier
, and
X.
Sun
,
Carbon
49
,
5014
(
2011
).
18.
L.
Yang
 et al,
Angew Chemie.
123
,
7270
(
2011
).
19.
C. W. B.
Bezerra
,
L.
Zhang
,
K.
Lee
,
H.
Liu
,
A. L. B.
Marques
,
E. P.
Marques
,
H.
Wang
, and
J.
Zhang
,
Electrochim. Acta
53
,
4937
(
2008
).
20.
S.
Maldonado
and
K. J.
Stevenson
,
J. Phys. Chem. B
109
,
4707
(
2005
).
21.
P. H.
Matter
,
E.
Wang
,
M.
Arias
,
E. J.
Biddinger
, and
U. S.
Ozkan
,
J. Phys. Chem. B
110
,
18374
(
2006
).
22.
F.
Charreteur
,
F.
Jaouen
,
S.
Ruggeri
, and
J.
Dodelet
,
Electrochim. Acta
53
,
2925
(
2008
).
23.
A. H.
Nevidomskyy
,
G.
Csányi
, and
M. C.
Payne
,
Phys. Rev. Lett.
91
,
105502
(
2003
).
24.
K.
Gong
,
F.
Du
,
Z.
Xia
,
M.
Durstock
, and
L.
Dai
,
Science
323
,
760
(
2009
).
25.
X.
Wang
,
K.
Maeda
,
A.
Thomas
,
K.
Takanabe
,
G.
Xin
,
J. M.
Carlsson
,
K.
Domen
, and
M.
Antonietti
,
Nat. Mater.
8
,
76
(
2009
).
26.
L. G.
Bulushevaa
,
A. V.
Okotruba
,
A. G.
Kurenya
,
Hongkun
Zhang
,
Huijuan
Zhang
,
X.
Chen
, and
H.
Song
,
Carbon
49
,
4013
(
2011
).
27.
S.
Boukhalfa
,
K.
Evanoff
, and
G.
Yushin
,
Energy Env. Sci.
5
,
6872
(
2012
).
28.
A.
Javey
 et al,
Nat. Mater.
1
,
241
(
2002
).
29.
J. M.
Green
,
L.
Dong
,
T.
Gutu
,
J.
Jiao
,
J. F.
Conley
, and
Y.
Ono
,
J. Appl. Phys.
99
,
094308
(
2006
).
30.
X.
Meng
,
M.
Ionescu
,
M. N.
Banis
,
Y.
Zhong
,
H.
Liu
,
Y.
Zhang
,
S.
Sun
,
R.
Li
, and
X.
Sun
,
J. Nanopart. Res.
13
,
1207
(
2011
).
31.
J.
Liu
,
Y.
Tang
,
B.
Xiao
,
T.
Sham
,
R.
Li
, and
X.
Sun
,
RSC Adv.
3
,
4492
(
2013
).
32.
X.
Meng
,
J.
Liu
,
X.
Li
,
M. N.
Banis
,
J.
Yang
,
R.
Li
, and
X.
Sun
,
RSC Adv.
3
,
7285
(
2013
).
33.
X.
Meng
,
Y.
Zhong
,
Y.
Sun
,
M. N.
Banis
,
R.
Li
, and
X.
Sun
,
Carbon
49
,
1133
(
2011
).
34.
J.
Liu
,
X.
Meng
,
M. N.
Banis
,
M.
Cai
,
R.
Li
, and
X.
Sun
,
J. Phys. Chem. C
116
,
14656
(
2012
).
35.
S.
Jandhyala
 et al,
ACS Nano
6
,
2722
(
2012
).
36.
T.
Sharifi
,
F.
Nitze
,
H. R.
Barzegar
,
C.-W.
Tai
,
M.
Mazurkiewicz
,
A.
Malolepszy
,
L.
Stobinski
, and
T.
Wågberg
,
Carbon
50
,
3535
(
2012
).
37.
See supplementary material at http://dx.doi.org/10.1116/1.4847995 for HRTEM and Raman data for ozone treated PCNTs. Due to relative inertness observed during experimentation, this data was transferred to the supporting information section. Also for additional XPS information such as NCNT survey spectrum as well as high resolution C1s spectrum for untreated and treated NCNTs.
38.
R.
Droppa
,
C. T. M.
Ribeiro
,
A. R.
Zanatta
,
M. C.
dos Santos
, and
F.
Alvarez
,
Phys. Rev. B
69
,
045405
(
2004
).
39.
S.
Osswald
,
M.
Havel
, and
Y.
Gogotsi
,
J. Raman Spectrosc.
38
,
728
(
2007
).
40.
M.
Sham
and
J.
Kim
,
Carbon
44
,
768
(
2006
).
41.
S. H.
Lim
,
H. I.
Elim
,
X. Y.
Gao
,
A. T. S.
Wee
,
W.
Ji
,
J. Y.
Lee
, and
J.
Lin
,
Phys. Rev. B
73
,
45402
(
2006
).
42.
C.
Morant
,
J.
Andrey
,
P.
Prieto
,
D.
Mendiola
,
J.
Sanz
, and
E.
Elizalde
,
Phys. Status Solidi A
203
,
1069
(
2006
).
43.
P.
Chen
,
X.
Wu
,
X.
Sun
,
J.
Lin
,
W.
Ji
, and
K.
Tan
,
Phys. Rev. Lett.
82
,
2548
(
1999
).
44.
H. C.
Choi
,
S. Y.
Bae
,
J.
Park
,
K.
Seo
,
C.
Kim
,
B.
Kim
,
H. J.
Song
, and
H.-J.
Shin
,
Appl. Phys. Lett.
85
,
5742
(
2004
).
45.
C.
Ewels
and
M.
Glerup
,
J. Nanosci. Nanotechnol.
5
,
1345
(
2005
).
46.
S.
Kundu
 et al,
J. Phys. Chem. C
113
,
14302
(
2009
).
47.
E.
Cruz-Silva
,
F.
López-Urías
,
E.
Munoz-Sandoval
,
B. G.
Sumpter
,
H.
Terrones
,
J.-C.
Charlier
,
V.
Meunier
, and
M.
Terrones
,
ACS Nano
3
,
1913
(
2009
).
48.
X.
Shi
,
Y.
Feng
,
X.
Wang
,
H.
Lee
,
J.
Liu
,
Y.
Qu
,
W.
He
,
S. M.
Kumar
, and
N.
Ren
,
Bioresour. Technol.
108
,
89
(
2012
).
49.
R.
Cruz-Silva
 et al,
ACS Nano
7
,
2192
(
2013
).
50.
H. C.
Knoops
,
J. W.
Elam
,
J. A.
Libera
, and
W. M.
Kessels
,
Chem. Mater.
23
,
2381
(
2011
).
51.
W.
Li
,
G.
Gibbs
, and
S. T.
Oyama
,
J. Am. Chem. Soc.
120
,
9041
(
1998
).
52.
B.
Dhandapani
and
S. T.
Oyama
,
Appl. Catal. B: Env.
11
,
129
(
1997
).
53.
Y.-S.
Min
,
E. J.
Bae
,
U. J.
Kim
,
E. H.
Lee
,
N.
Park
,
C. S.
Hwang
, and
W.
Park
,
Appl. Phys. Lett.
93
,
43113
(
2008
).

Supplementary Material

You do not currently have access to this content.