In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac)2], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1 ± 0.01 nm/cycle within the wide ALD temperature window of 175–300 °C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnOx–Si interface. The resistivity of the SnOx films was calculated to be 0.3 Ω cm. Results of this work demonstrate the possibility of introducing Sn(acac)2 as tin precursor to deposit conducting ALD SnOx thin films on a silicon surface, with clean interface and no formation of undesired SiO2 or other interfacial reaction products, for transparent conducting oxide applications.

1.
H.
Hosono
,
H.
Ohta
,
M.
Orita
,
K.
Ueda
, and
M.
Hirano
,
Vacuum
66
,
419
(
2002
).
2.
X.-J.
Huang
,
Y.-K.
Choi
,
K.-S.
Yun
, and
E.
Yoon
,
Sens. Actuators, B
115
,
357
(
2006
).
3.
A.
Hjortsberg
,
I.
Hamberg
, and
C. G.
Granqvist
,
Thin Solid Films
90
,
323
(
1982
).
4.
R. G.
Gordon
,
J.
Proscia
,
F. B.
Ellis
, Jr.
, and
A. E.
Delahoy
,
Sol. Energy Mater.
18
,
263
(
1989
).
5.
M. J.
Fuller
and
M. E.
Warwick
,
J. Catal.
29
,
441
(
1973
).
6.
Y.
Kim
,
J. H.
Jang
,
J. S.
Kim
,
S. D.
Kim
, and
S. E.
Kim
,
Mater. Sci. Eng., B
177
,
1470
(
2012
).
7.
M.
Batzill
and
U.
Diebold
,
Prog. Surf. Sci.
79
,
47
(
2005
).
8.
F.
Edelman
,
R.
Brener
,
C.
Cytermann
,
M.
Eizenberg
,
R.
Weil
, and
W.
Beyer
,
Appl. Phys. Lett.
67
,
389
(
1995
).
9.
A.
Maddalena
,
R.
Dal Maschio
,
S.
Diré
, and
A.
Raccanelli
,
J. Non-Cryst. Solids
121
,
365
(
1990
).
10.
J.
Sundqvist
,
J.
Lu
,
M.
Ottosson
, and
A.
Hårsta
,
Thin Solid Films
514
,
63
(
2006
).
11.
B. N.
Joshi
,
H.
Yoon
, and
S. S.
Yoon
,
J. Electrost.
71
,
48
(
2013
).
12.
J.
Bruneaux
,
H.
Cachet
,
M.
Froment
, and
A.
Messad
,
Thin Solid Films
197
,
129
(
1991
).
13.
C.
Jin
,
T.
Yamazaki
,
K.
Ito
,
T.
Kikuta
, and
N.
Nakatani
,
Vacuum
80
,
723
(
2006
).
14.
J. W.
Elam
,
D. A.
Baker
,
A. J.
Hryn
,
A. B. F.
Martinson
,
M. J.
Pellin
, and
J. T.
Hupp
,
J. Vac. Sci. Technol. A
26
,
244
(
2008
).
15.
J.
Heo
,
A. S.
Hock
, and
R. G.
Gordon
,
Chem. Mater.
22
,
4964
(
2010
).
16.
J.
Heo
,
S. B.
Kim
, and
R. G.
Gordon
,
J. Mater. Chem.
22
,
4599
(
2012
).
17.
W.-S.
Choi
,
Trans. Electr. Electron. Mater.
10
,
200
(
2009
).
18.
B. K.
Lee
 et al.,
Mater. Res. Bull.
47
,
3052
(
2012
).
19.
G.
Natarajan
and
D.
Cameron
,
Appl. Phys. A
95
,
621
(
2009
).
20.
X.
Du
and
S. M.
George
,
Sens. Actuators, B
135
,
152
(
2008
).
21.
S. K.
Selvaraj
,
G.
Jursich
, and
C. G.
Takoudis
,
Rev. Sci. Instrum.
84
,
095109
(
2013
).
22.
R.
Xu
,
S. K.
Selvaraj
,
G.
Jursich
,
A.
Feinerman
, and
C.
Takoudis
,
ECS J. Solid State Sci. Technol.
2
,
P452
(
2013
).
23.
M.
Kitagawa
,
K.
Mori
,
S.
Ishihara
,
M.
Ohno
,
T.
Hirao
,
Y.
Yoshioka
, and
S.
Kohiki
,
J. Appl. Phys.
54
,
3269
(
1983
).
24.
R. H.
Perry
and
D. W.
Green
,
Perry's Chemical Engineers' Handbook
, 7th ed. (
McGraw-Hill
,
New York
,
1997
), pp.
2
193
.
25.
S.
Cho
,
J.
Yu
,
S.
Kang
, and
D.-Y.
Shih
,
J. Electron. Mater.
34
,
635
(
2005
).
26.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
27.
K.
Ellmer
,
J. Phys. D: Appl. Phys.
34
,
3097
(
2001
).
28.
Q.
Tao
,
A.
Kueltzo
,
M.
Singh
,
G.
Jursich
, and
C. G.
Takoudis
,
J. Electrochem. Soc.
158
,
G27
(
2011
).
29.
S.-S.
Park
and
J. D.
Mackenzie
,
Thin Solid Films
258
,
268
(
1995
).
30.
E.
Shanthi
,
A.
Banerjee
,
V.
Dutta
, and
K. L.
Chopra
,
Thin Solid Films
71
,
237
(
1980
).
You do not currently have access to this content.