Encapsulating and functionalizing polymer nanofibers can improve the polymers chemical resistance and surface reactivity, enabling new applications including biosensing, flexible electronics, gas filtration, and chemical separations. Polymer fiber functionalization typically involves energy intensive wet chemical treatments and/or plasma exposure. Recent results show low temperature atomic layer deposition (ALD) to be a viable means to coat nanofibers with uniform and conformal inorganic and hybrid organic–inorganic layers. For this article, the authors describe how the mechanical properties of nylon-6 nanofibers are affected by ALD coatings of TiO2 and other metal oxides. They find that the stress–strain behavior of nylon-6 nanofibers depends strongly on the specific precursor chemistry used in the coating process. For ALD TiO2 coatings, titanium tetrachloride tended to embrittle the fibers, whereas titanium isopropoxide had a more subtle effect. Physical characterization shows that the TiCl4 diffused into the nylon-6 and reacted subsurface, whereas the titanium isopropoxide tended to react on the surface producing a more abrupt organic/inorganic interface. Results show that precursor choice is an important factor when designing thin film coating processes on polymeric substrates.

1.
Z.-M.
Huang
,
Y.-Z.
Zhang
,
M.
Kotaki
, and
S.
Ramakrishna
,
Compos. Sci. Technol.
63
,
2223
(
2003
).
2.
D. H.
Reneker
,
A. L.
Yarin
,
E.
Zussman
, and
H.
Xu
,
Adv. Appl. Mech.
41
,
43
(
2007
).
3.
J. S.
Jeong
,
S. Y.
Jeon
,
T. Y.
Lee
,
J. H.
Park
,
J. H.
Shin
,
P. S.
Alegaonkar
,
A. S.
Berdinsky
, and
J. B.
Yoo
,
Diamond Relat. Mater.
15
,
1839
(
2006
).
4.
M. B.
Bazbouz
and
G. K.
Stylios
,
J. Polym. Sci., Part B: Polym. Phys.
48
,
1719
(
2010
).
5.
W. K.
Son
,
J. H.
Youk
, and
W. H.
Park
,
Carbohydr. Polym.
65
,
430
(
2006
).
6.
D.
Li
,
Y.
Wang
, and
Y.
Xia
,
Nano Lett.
3
,
1167
(
2003
).
7.
H. S.
Yoo
,
T. G.
Kim
, and
T. G.
Park
,
Adv. Drug Delivery Rev.
61
,
1033
(
2009
).
8.
F.
Chen
,
C.
Lee
, and
S.
Teoh
,
Mater. Sci. Eng., C
27
,
325
(
2007
).
9.
J. H.
Park
,
B. S.
Kim
,
Y. C.
Yoo
,
M. S.
Khil
, and
H. Y.
Kim
,
J. Appl. Polym. Sci.
107
,
2211
(
2008
).
10.
J.
Zeng
,
A.
Aigner
,
F.
Czubayko
,
T.
Kissel
,
J. H.
Wendorff
, and
A.
Greiner
,
Biomacromolecules
6
,
1484
(
2005
).
11.
A.
Wróbel
,
M.
Kryszewski
,
W.
Rakowski
,
M.
Okoniewski
, and
Z.
Kubacki
,
Polymer
19
,
908
(
1978
).
12.
Q.
Wei
,
Y.
Liu
,
D.
Hou
, and
F.
Huang
,
J. Mater. Process. Technol.
194
,
89
(
2007
).
13.
D.
Pappas
,
A.
Bujanda
,
J. D.
Demaree
,
J. K.
Hirvonen
,
W.
Kosik
,
R.
Jensen
, and
S.
McKnight
,
Surf. Coat. Technol.
201
,
4384
(
2006
).
14.
M.
Ma
,
Y.
Mao
,
M.
Gupta
,
K. K.
Gleason
, and
G. C.
Rutledge
,
Macromolecules
38
,
9742
(
2005
).
15.
N. I.
Baklanova
,
T. M.
Zima
,
A. I.
Boronin
,
S. V.
Kosheev
,
A. T.
Titov
,
N. V.
Isaeva
,
D. V.
Graschenkov
, and
S. S.
Solntsev
,
Surf. Coat. Technol.
201
,
2313
(
2006
).
16.
S.-M.
Lee
,
E.
Pippel
,
U.
Gosele
,
C.
Dresbach
,
Y.
Qin
,
C. V.
Chandran
,
T.
Brauniger
,
G.
Hause
, and
M.
Knez
,
Science
324
,
488
(
2009
).
17.
Q.
Peng
,
X.-Y.
Sun
,
J. C.
Spagnola
,
G. K.
Hyde
,
R. J.
Spontak
, and
G. N.
Parsons
,
Nano Lett.
7
,
719
(
2007
).
18.
C. J.
Oldham
,
B.
Gong
,
J. C.
Spagnola
,
J. S.
Jur
,
K. J.
Senecal
,
T. A.
Godfrey
, and
G. N.
Parsons
,
J. Electrochem. Soc.
158
,
D549
(
2011
).
19.
E.
Santala
,
M.
Kemell
,
M.
Leskelä
, and
M.
Ritala
,
Nanotechnology
20
,
035602
(
2009
).
20.
G. K.
Hyde
 et al,
Langmuir
26
,
2550
(
2010
).
21.
W.-S.
Kim
,
B.-S.
Lee
,
D.-H.
Kim
,
H.-C.
Kim
,
W.-R.
Yu
, and
S.-H.
Hong
,
Nanotechnology
21
,
245605
(
2010
).
22.
J. C.
Spagnola
,
B.
Gong
,
S. A.
Arvidson
,
J. S.
Jur
,
S. A.
Khan
, and
G. N.
Parsons
,
J. Mater. Chem.
20
,
4213
(
2010
).
23.
J. S.
Jur
,
W. J.
Sweet
,
C. J.
Oldham
, and
G. N.
Parsons
,
Adv. Funct. Mater.
21
,
1993
(
2011
).
24.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
, and
P.
Haussalo
,
Chem. Mater.
5
,
1174
(
1993
).
25.
M.
Ritala
,
M.
Leskelä
,
E.
Nykänen
,
P.
Soininen
, and
L.
Niinistö
,
Thin Solid Films
225
,
288
(
1993
).
26.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
, and
T.
Uustare
,
Appl. Surf. Sci.
172
,
148
(
2001
).
27.
Q.
Xie
 et al,
J. Electrochem. Soc.
155
,
H688
(
2008
).
28.
E. P. S.
Tan
,
S. Y.
Ng
, and
C. T.
Lim
,
Biomaterials
26
,
1453
(
2005
).
29.
S.-C.
Wong
,
A.
Baji
, and
S.
Leng
,
Polymer
49
,
4713
(
2008
).
30.
R.
Inai
,
M.
Kotaki
, and
S.
Ramakrishna
,
Nanotechnology
16
,
208
(
2005
).
31.
E. P. S.
Tan
and
C. T.
Lim
,
Nanotechnology
17
,
2649
(
2006
).
32.
P.
Kiselev
and
J.
Rosell-Llompart
,
J. Appl. Polym. Sci.
125
,
2433
(
2012
).
33.
M.
Khamforoush
and
M.
Mahjob
,
Mater. Lett.
65
,
453
(
2011
).
34.
H. R.
Pant
,
K.-T.
Nam
,
H.-J.
Oh
,
G.
Panthi
,
H.-D.
Kim
,
B.
Kim
, and
H. Y.
Kim
,
J. Colloid Interface Sci.
364
,
107
(
2011
).
35.
B.
Gong
and
G. N.
Parsons
,
J. Mater. Chem.
22
,
15672
(
2012
).
36.
J.
Brandrup
,
E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer Handbook
, 4th ed. (
John Wiley & Sons
,
1999, 2005)
, pp. VI/
37.
B.
Gong
,
Q.
Peng
,
J. S.
Jur
,
C. K.
Devine
,
K.
Lee
, and
G. N.
Parsons
,
Chem. Mater.
23
,
3476
(
2011
).
38.
A.
Sinha
,
D. W.
Hess
, and
C. L.
Henderson
,
J. Vac. Sci. Technol. B
25
,
1721
(
2007
).
You do not currently have access to this content.