Due to the abundance and usefulness of tin oxide for applications such as transparent conductors, sensors, and catalysts, it is desirable to establish high quality atomic layer deposition (ALD) of this material. ALD allows for uniform, conformal coating of complex topographies with ultrathin films and can broaden the applicability of tin oxide to systems such as nanostructured solar cells. The present work examines the ALD of tin oxide by means of the precursor tetrakis(dimethylamino)tin and water as a counter-reactant. Low temperature growth in the range of 30–200 °C on Si(100) and glass substrates is studied. It is found that the growth rate increases with reduced temperature, up to ∼2.0 Å/cycle at 30 °C, as compared to 0.70 Å/cycle at 150 °C. The ALD process is established to be saturated even at the lowest temperature studied, for which the film contamination levels are below the detection limits of x-ray photoelectron spectroscopy. As-deposited films are smooth (rms roughness of 33 Å for a 460 Å thick film deposited on Si at 150 °C) and amorphous according to x-ray diffractometry. However, post-annealing to 600 °C in nitrogen leads to the formation of polycrystalline rutile SnO2. The optical constants obtained from variable angle spectroscopic ellipsometry suggest that as-deposited films have amorphous type bandgaps, which decrease with increasing temperature and film thickness. High quality, amorphous SnO2 films with moderately tunable optical properties are thus obtained by ALD at temperatures as low as 30 °C using a commercially available tin precursor and water.

1.
J. L. G.
Fierro
,
Metal Oxides: Chemistry and Applications
(
CRC/Taylor & Francis,
Boca Raton, FL
,
2006
).
2.
H.
Ogawa
,
A.
Abe
,
M.
Nishikawa
, and
S.
Hayakawa
,
J. Electrochem. Soc.
128
,
2020
(
1981
).
3.
K.
Ishiguro
,
T.
Sasaki
,
T.
Arai
, and
I.
Imai
,
J. Phys. Soc. Jpn.
13
,
296
(
1958
).
4.
M.
Batzill
and
U.
Diebold
,
Prog. Surf. Sci.
79
,
47
(
2005
).
5.
P.
Cox
,
The Surface Science of Metal Oxides
(
Cambridge University Press
,
Cambridge, NY
,
1994
).
7.
B.
Panchapakesan
,
D. L.
DeVoe
,
M. R.
Widmaier
,
R.
Cavicchi
, and
S.
Semancik
,
Nanotechnology
12
,
336
(
2001
).
8.
C. J.
Martinez
,
B.
Hockey
,
C. B.
Montgomery
, and
S.
Semancik
,
Langmuir
21
,
7937
(
2005
).
9.
A.
Kolmakov
,
Y.
Zhang
,
G.
Cheng
, and
M.
Moskovits
,
Adv. Mater.
15
,
997
(
2003
).
10.
H.
De Waal
and
F.
Simons
,
Thin Solid Films
77
,
253
(
1981
).
11.
M.
Vergohl
,
N.
Malkomes
,
T.
Matthee
,
G.
Brauer
,
U.
Richter
,
F. W.
Nickol
, and
J.
Bruch
,
Thin Solid Films
392
,
258
(
2001
).
12.
R. G.
Gordon
,
J.
Proscia
,
F. B.
Ellis
, Jr.
, and
A. E.
Delahoy
,
Sol. Energy Mater.
18
,
263
(
1989
).
13.
H.
Klasens
,
Solid State Electron.
7
,
701
(
1964
).
14.
H. K.
Liao
,
J. C.
Chou
,
W. Y.
Chung
,
T. P.
Sun
, and
S. K.
Hsiung
,
Sens. Actuators B
50
,
104
(
1998
).
15.
F.
Chen
and
M.
Liu
,
Chem. Commun.
1999
,
1829
.
16.
P.
Gao
,
Y.
Ding
, and
Z.
Wang
,
Nano Lett.
3
,
1315
(
2003
).
17.
A.
Hagemeyer
,
Z.
Hogan
,
M.
Schlichter
,
B.
Smaka
,
G.
Streukens
,
H.
Turner
,
A.
Volpe
,
H.
Weinberg
, and
K.
Yaccato
,
Appl. Catal., A
317
,
139
(
2007
).
18.
S.
Ferrere
,
A.
Zaban
, and
B. A.
Gregg
,
J. Phys. Chem. B
101
,
4490
(
1997
).
19.
J. S.
Lee
 et al.,
J. Cryst. Growth
254
,
443
(
2003
).
20.
R.
Gordon
,
J. Non-Cryst. Solids
218
,
81
(
1997
).
21.
T.
Minami
,
Thin Solid Films
516
,
5822
(
2008
).
22.
J.
Proscia
and
R. G.
Gordon
,
Thin Solid Films
214
,
175
(
1992
).
23.
R. B. H.
Tahar
,
T.
Ban
,
Y.
Ohya
, and
Y.
Takahashi
,
J. Appl. Phys.
83
,
2631
(
1998
).
24.
G.
Sanon
,
R.
Rup
, and
A.
Mansingh
,
Thin Solid Films
190
,
287
(
1989
).
25.
J.
Kane
,
H.
Schweizer
, and
W.
Kern
,
J. Electrochem. Soc.
122
,
1144
(
1975
).
26.
E. J. H.
Lee
,
C.
Ribeiro
,
T. R.
Giraldi
,
E.
Longo
,
E. R.
Leite
, and
J. A.
Varela
,
Appl. Phys. Lett.
84
,
1745
(
2004
).
27.
R. D.
Tarey
and
T. A.
Raju
,
Thin Solid Films
128
,
181
(
1985
).
28.
J.
Sundqvist
,
J.
Lu
,
M.
Ottosson
, and
A.
Hårsta
,
Thin Solid Films
514
,
63
(
2006
).
29.
S. H.
Park
,
Y. C.
Son
,
W. S.
Willis
,
S. L.
Suib
, and
K. E.
Creasy
,
Chem. Mater.
10
,
2389
(
1998
).
30.
V.
Brinzari
,
G.
Korotcenkov
, and
V.
Golovanov
,
Thin Solid Films
391
,
167
(
2001
).
31.
G.
Sberveglieri
,
Sens. Actuators B
6
,
239
(
1992
).
32.
J.
Heo
,
A. S.
Hock
, and
R. G.
Gordon
,
Chem. Mater.
22
,
4964
(
2010
).
33.
G.
Choi
,
L.
Satyanarayana
, and
J.
Park
,
Appl. Surf. Sci.
252
,
7878
(
2006
).
34.
M.
Utriainen
,
H.
Lattu
,
H.
Viirolä
,
L.
Niinistö
,
R.
Resch
, and
G.
Friedbacher
,
Mikrochim. Acta
133
,
119
(
2000
).
35.
J. W.
Elam
,
D. A.
Baker
,
A. J.
Hryn
,
A. B. F.
Martinson
,
M. J.
Pellin
, and
J. T.
Hupp
,
J. Vac. Sci. Technol. A
26
,
244
(
2008
).
36.
X.
Du
,
Y.
Du
, and
S.
George
,
J. Vac. Sci. Technol. A
23
,
581
(
2005
).
37.
C.
Dücsö
,
N. Q.
Khanh
,
Z.
Horváth
,
I.
Bársony
,
M.
Utriainen
,
S.
Lehto
,
M.
Nieminen
, and
L.
Niinistö
,
J. Electrochem. Soc.
143
,
683
(
1996
).
38.
J.
Heo
,
S. B.
Kim
, and
R. G.
Gordon
,
J. Mater. Chem.
22
,
4599
(
2012
).
39.
D. H.
Kim
,
J.-H.
Kwon
,
M.
Kim
, and
S.-H.
Hong
,
J. Cryst. Growth
322
,
33
(
2011
).
40.
J. J.
Robbins
,
R. T.
Alexander
,
M.
Bai
,
Y. J.
Huang
,
T. L.
Vincent
, and
C. A.
Wolden
,
J. Vac. Sci. Technol. A
19
,
2762
(
2001
).
41.
J.
Sundqvist
,
A.
Tarre
,
A.
Rosental
, and
A.
Harsta
,
Chem. Vap. Deposition
9
,
21
(
2003
).
42.
H.
Viirolä
and
L.
Niinistö
,
Thin Solid Films
251
,
127
(
1994
).
43.
V. E.
Drozd
and
V. B.
Aleskovski
,
Appl. Surf. Sci.
82–83
,
591
(
1994
).
44.
C.
Marichy
,
N.
Donato
,
M.-G.
Willinger
,
M.
Latino
,
D.
Karpinsky
,
S.-H.
Yu
,
G.
Neri
, and
N.
Pinna
,
Adv. Funct. Mater.
21
,
658
(
2011
).
45.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
46.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
47.
T.
Aaltonen
,
M.
Ritala
,
T.
Sajavaara
,
J.
Keinonen
, and
M.
Leskela
,
Chem. Mater.
15
,
1924
(
2003
).
48.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
49.
M.
Ritala
and
M.
Leskelä
,
Handbook of Thin Films
, edited by
H. S.
Nalva
(
Academic Press
,
San Diego
,
2001
), Vol. 1, pp.
103
.
50.
H.
Kim
,
Surf. Coat. Technol.
200
,
3104
(
2006
).
51.
H.
Kim
,
J. Vac. Sci. Technol. B
21
,
2231
(
2003
).
52.
B. S.
Lim
,
A.
Rahtu
, and
R. G.
Gordon
,
Nat. Mater.
2
,
749
(
2003
).
53.
T.
Aaltonen
,
M.
Ritala
,
V.
Sammelselg
, and
M.
Leskela
,
J. Electrochem. Soc.
151
,
G489
(
2004
).
54.
D. B.
Farmer
and
R. G.
Gordon
,
Electrochem. Solid-State Lett.
8
,
G89
(
2005
).
55.
X.
Wang
,
S. M.
Tabakman
, and
H.
Dai
,
J. Am. Chem. Soc.
130
,
8152
(
2008
).
56.
M. M.
Frank
,
G. D.
Wilk
,
D.
Starodub
,
T.
Gustafsson
,
E.
Garfunkel
,
Y. J.
Chabal
,
J.
Grazul
, and
D. A.
Muller
,
Appl. Phys. Lett.
86
,
152904
(
2005
).
57.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P. I.
Raisanen
,
M.
Leskelä
,
T.
Sajavaara
, and
J.
Keinonen
,
Science
288
,
319
(
2000
).
58.
J. Y.
Kim
and
S. M.
George
,
J. Phys. Chem. C
114
,
17597
(
2010
).
59.
L.
Reijnen
,
B.
Meester
,
A.
Goossens
, and
J.
Schoonman
,
Chem. Vap. Deposition
9
,
15
(
2003
).
60.
P.
Sinsermsuksakul
,
J.
Heo
,
W.
Noh
,
A. S.
Hock
, and
R. G.
Gordon
,
Adv. Energy Mater.
1
,
1116
(
2011
).
61.
E. B.
Yousfi
,
B.
Weinberger
,
F.
Donsanti
,
P.
Cowache
, and
D.
Lincot
,
Thin Solid Films
387
,
29
(
2001
).
62.
Y.
Hua
,
W. P.
King
, and
C. L.
Henderson
,
Microelectron. Eng.
85
,
934
(
2008
).
63.
X.
Jiang
and
S. F.
Bent
,
J. Electrochem. Soc.
154
,
D648
(
2007
).
64.
X.
Jiang
and
S. F.
Bent
,
J. Phys. Chem. C
113
,
17613
(
2009
).
65.
H. -B.-R.
Lee
,
K.
Jaemin
,
K.
Hyungjun
,
K.
Woo-Hee
,
L.
Jeong Won
, and
H.
Inchan
,
J. Korean Phys. Soc.
56
,
104
(
2010
).
66.
W.
Lee
and
F. B.
Prinz
,
J. Electrochem. Soc.
156
,
G125
(
2009
).
67.
M. N.
Mullings
,
H. -B.-R.
Lee
,
N.
Marchack
,
X.
Jiang
,
Z.
Chen
,
Y.
Gorlin
,
K.-P.
Lin
, and
S. F.
Bent
,
J. Electrochem. Soc.
157
,
D600
(
2010
).
68.
R. H. A.
Ras
,
E.
Sahramo
,
J.
Malm
,
J.
Raula
, and
M.
Karppinen
,
J. Am. Chem. Soc.
130
,
11252
(
2008
).
69.
A.
Sinha
,
D. W.
Hess
, and
C. L.
Henderson
,
Proc. SPIE
6519
,
65191J
(
2007
).
70.
D. B.
Farmer
and
R. G.
Gordon
,
Nano Lett.
6
,
699
(
2006
).
71.
C. F.
Herrmann
,
F. H.
Fabreguette
,
D. S.
Finch
,
R.
Geiss
, and
S. M.
George
,
Appl. Phys. Lett.
87
,
123110
(
2005
).
72.
W.-H.
Kim
,
S.-J.
Park
,
J.-Y.
Son
, and
H.
Kim
,
Nanotechnology
19
,
045302
(
2008
).
73.
J. S.
King
,
D.
Heineman
,
E.
Graugnard
, and
C. J.
Summers
,
Appl. Surf. Sci.
244
,
511
(
2005
).
74.
I. M.
Povey
,
M.
Bardosova
,
F.
Chalvet
,
M. E.
Pemble
, and
H. M.
Yates
,
Surf. Coat. Technol.
201
,
9345
(
2007
).
75.
A.
Yamada
,
B. S.
Sang
, and
M.
Konagai
,
Appl. Surf. Sci.
112
,
216
(
1997
).
76.
B. S.
Sang
and
M.
Konagai
,
Jpn. J. Appl. Phys., Part 2
35
,
L602
(
1996
).
77.
C. A.
Hoel
,
T. O.
Mason
,
J. F.
Gaillard
, and
K. R.
Poeppelmeier
,
Chem. Mater.
22
,
3569
(
2010
).
78.
R.
Methaapanon
,
S. M.
Geyer
,
C.
Hägglund
,
P. A.
Pianetta
, and
S. F.
Bent
,
Rev. Sci. Instrum.
84
,
015104
(
2013
).
79.
See supplementary material at http://dx.doi.org/10.1116/1.4812717 for carbon contamination determined by X-ray photoelectron spectroscopy.
80.
C.
Herzinger
and
B.
Johs
,
Guide to Using WVASE32
(
J.A. Woollam Company
,
Lincoln, NE
,
1996
).
81.
D.
Davazoglou
,
Thin Solid Films
302
,
204
(
1997
).
82.
J.
Melsheimer
and
D.
Ziegler
,
Thin Solid Films
129
,
35
(
1985
).
83.
J.
Tauc
,
R.
Grigorov
, and
A.
Vancu
,
Phys. Status Solidi
15
,
627
(
1966
).
84.
M.
Ohring
,
Materials Science of Thin Films
(
Stevens Institute of Technology
,
Hoboken, NJ
,
2002
).

Supplementary Material

You do not currently have access to this content.