The authors have examined ultrathin (≤10 Å) tantalum nitride (TaNx) thin films deposited by atomic layer deposition (ALD) on three surfaces relevant to interconnect layers in microelectronic devices: thermally grown SiO2; a Cu thin film grown by physical vapor deposition, and a carbon-doped SiO2 porous low-κ thin film. The authors have employed ex situ angle-resolved x-ray photoelectron spectroscopy (ARXPS), low-energy ion scattering spectroscopy (LEISS), and atomic force microscopy (AFM) to determine the continuity of these thin films, and by implication, the abruptness of the thin film/substrate interface. On SiO2 and low-κ, the authors find similar results: both ARXPS and AFM indicate that smooth, uniform thin films are deposited, consistent with nearly layer-by-layer growth of TaNx on these surfaces. Examination of these films using LEISS reveals that while the 10 Å TaNx thin films are continuous, the 5 Å TaNx thin films are not continuous and may possess on the order of ∼10% exposed substrate in the form of small subnanometer inclusions. On Cu, the situation is quite different. The TaNx thin films on these surfaces are not continuous, and our results point to a mixed layer of TaNx and Cu forming during ALD. In all cases, if one were to rely solely on results from ARXPS, the picture would be incomplete as the results from LEISS are ultimately decisive concerning thin film continuity.

2.
O.
Van der Straten
,
S. M.
Rossnagel
,
J. P.
Doyle
, and
K. P.
Rodbell
,
ECS Trans.
1
,
51
(
2006
).
3.
M.
Ohring
,
The Materials Science of Thin Films
(
Academic
,
London
,
United Kingdom
,
1992
).
4.
R. L.
Schwoebel
and
E. J.
Shipsey
,
J. Appl. Phys.
37
,
3682
(
1966
).
5.
G.
Ehrlich
and
F. G.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
).
6.
A.
Dube
,
M.
Sharma
,
P. F.
Ma
,
P. A.
Ercius
,
D. A.
Muller
and
J. R.
Engstrom
,
J. Phys. Chem. C
111
,
11045
(
2007
).
7.
K. J.
Hughes
and
J. R.
Engstrom
,
J. Vac. Sci. Technol. A
28
,
1033
(
2010
).
8.
H. H.
Brongersma
,
M.
Draxler
,
M.
de Ridder
, and
P.
Bauer
,
Surf. Sci. Rep.
62
,
63
(
2007
).
9.
H. H.
Brongersma
and
J.
Jacobs
,
Appl. Surf. Sci.
75
,
133
(
1994
).
10.
Y.
Luo
,
D.
Slater
,
M.
Han
,
J.
Moryl
,
R. M.
Osgood
, Jr.
, and
J. G.
Chen
,
Langmuir
14
,
1493
(
1998
).
11.
T.
Nakamura
,
H.
Inada
, and
M.
Iiyama
,
Appl. Surf. Sci.
130–132
,
576
(
1998
).
12.
M.
de Ridder
,
P. C.
van de Ven
,
R. G.
van Welzenis
,
S.
Helfensteyn
,
C.
Creemers
,
P.
Van Der Voort
,
M.
Mathieu
,
E. F.
Vansant
, and
H. H.
Brongersma
,
J. Phys. Chem. B.
106
,
13146
(
2002
).
13.
E. B. O.
da Rosa
,
C.
Krug
,
C.
Radtke
,
R. P.
Pezzi
,
L.
Miotti
,
R.
Brandão
,
J.
Morais
,
I. J. R.
Baumvol
, and
F. C.
Stedile
,
Surf. Rev. Lett.
9
,
393
(
2002
).
14.
A.
Satta
 et al,
J. Appl. Phys.
92
,
7641
(
2002
).
15.
T.
Conard
,
W.
Vandervorst
,
J.
Petry
,
C.
Zhao
,
W.
Besling
,
H.
Nohira
, and
O.
Richard
,
Appl. Surf. Sci.
203–204
,
400
(
2003
).
16.
R. L.
Puurunen
 et al,
J. Appl. Phys.
96
,
4878
(
2004
).
17.
P. D.
Kirsch
 et al, in
Proceedings of the 35th European Solid-State Device Research Conference, ESSDERC
(
ESSDERC
,
Grenoble, France
,
2005
), p.
367
.
18.
M.
Stokhof
,
H.
Sprey
,
W.
Li
,
S.
Haukka
,
M.
Ridder de
, and
H.
Bringsersma
,
ECS Trans.
1
,
71
(
2006
).
19.
Y.
Lebedinskii
,
A.
Zenkevich
,
G.
Scarel
, and
M.
Fancciulli
,
Top. Appl. Phys.
106
,
127
(
2007
).
20.
L.
Miotti
,
R. P.
Pezzi
,
M.
Copel
,
C.
Krug
, and
I. J.
Baumvol
,
Appl. Phys. Lett.
90
,
052913
(
2007
)
21.
J.
Yoshihara
,
J. M.
Campbell
, and
C. T.
Campbell
,
Surf. Sci.
406
,
235
(
1998
).
22.
Q.
Ma
,
H.
Guo
,
R. G.
Gordon
, and
F.
Zaera
,
Chem. Mater.
22
,
352
(
2010
)
23.
R.
ter Veen
,
M.
Fartmann
,
R.
Kersting
, and
B.
Hagenhoff
,
J. Vac. Sci. Technol. A
31
,
01A113
(
2013
)
24.
R. G.
Vitchev
,
J. J.
Pireaux
,
T.
Conard
,
H.
Bender
,
J.
Wolstenholme
, and
Chr.
Defranoux
,
Appl. Surf. Sci.
235
,
21
(
2004
).
25.
P.
Mack
,
R. G.
White
,
J.
Wolstenholme
, and
T.
Conard
,
Appl. Surf. Sci.
252
,
8270
(
2006
).
26.
K. J.
Hughes
and
J. R.
Engstrom
,
J. Vac. Sci. Technol. A
30
,
01A102
(
2012
).
27.
S.
Hofmann
,
Surf. Interface Anal.
2
,
148
(
1980
).
28.
M.
Zier
,
S.
Oswald
,
R.
Reiche
, and
K.
Wetzig
,
Appl. Surf. Sci.
252
,
234
(
2005
).
29.
M. P.
Seah
and
S. J.
Spencer
,
J. Vac. Sci. Technol. A
21
,
345
(
2003
);
M. P.
Seah
and
S. J.
Spencer
,
Surf. Interface Anal.
33
,
640
(
2002
);
M. P.
Seah
and
R.
White
,
Surf. Interface Anal.
33
,
960
(
2002
).
30.
R.
Champaneria
,
P.
Mack
,
R.
White
, and
J.
Wolstenholme
,
Surf. Interface Anal.
35
,
1028
(
2003
).
31.
See supplementary material at http://dx.doi.org/10.1116/1.4812695 for additional details concerning the experimental procedures, and a brief discussion and analysis of additional results from XPS and AFM.
32.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1994
).
33.
E.
Taglauer
and
W.
Heiland
,
Appl. Phys.
9
,
261
(
1976
).
34.
C.
Somerton
and
D.
King
,
Surf. Sci.
89
,
391
(
1979
).
35.
R.
Spitzl
,
H.
Niehus
, and
G.
Comsa
,
Surf. Sci. Lett.
250
,
355
(
1991
).
36.
A.-L.
Barabási
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
Cambridge
,
United Kingdom
,
1995
).
37.
R.
Sreenivasan
,
T.
Sugawara
,
K. C.
Saraswat
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
90
,
102101
(
2007
).

Supplementary Material

You do not currently have access to this content.