This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications,it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.

1.
E. K.
Richman
and
J. E.
Hutchison
,
ACS Nano
3
,
2441
(
2009
).
4.
A. B.
Stefaniak
et al,
Nanotoxicology
(
2012
).
5.
Nat. Nano
7
,
545
(
2012
).
6.
See: http://www.ilsi.org/NanoCharacter/Pages/NanoCharacter.aspx for NanoCharacter: A collaborative project to improve comparability in how nanomaterials are characterized, University of Michigan Risk Science Center (
2012
).
7.
D. R.
Baer
et al,
Surf. Interface Anal.
40
,
529
(
2008
).
8.
D. R.
Beverhof
and
R. M.
David
,
Anal. Bioanal. Chem.
396
,
953
(
2010
).
9.
R. G.
Finke
, in
Metal Nanoparticles
, edited by
D. L.
Feldheim
and
D. C. A.
Foss
(
Marcel Dekker
,
New York
,
2002
), Chap. 2, pp.
17
54
.
10.
D. W.
Grainger
and
D. G.
Castner
,
Adv. Mater.
20
,
867
(
2008
).
11.
V. H.
Grassian
,
J. Phys. Chem. C
112
,
18303
(
2008
).
12.
A. S.
Karakoti
,
L. L.
Hench
, and
S.
Seal
,
JOM
58
,
77
(
2006
).
13.
S. J. L.
Billinge
and
I.
Levin
,
Science
316
,
561
(
2007
).
14.
M. R.
Canagaratna
et al,
Mass. Spectrom. Rev.
26
,
185
(
2007
).
15.
See: www.foresight.org/nano/history.html for a short history of nanotechnology, Foresight Institute (
2013
).
16.
N.
Taniguchi
, in
Proceedings International Conference on Product Engineering Tokyo, Part II
(
Japan Society of Precision Engineering
,
Tokyo
,
1974
),
5
pp.
17.
M. C.
Roco
,
C. A.
Mirkin
, and
M. C.
Hersam
,
Nanotechnology Research Directions for Societal Needs in 2020, Retrospective and Outlook
(
Springer
,
Berlin
,
2010
).
18.
See: http://www.nano.gov/nanotech-101/what/definition for What is nanotechnology?, National Nanotechnology Initiative (
2013
).
19.
D. R.
Baer
,
P. E.
Burrows
, and
A. A.
El-Azab
,
Prog. Org. Coat.
47
,
342
(
2003
).
20.
J. G.
Li
,
W. X.
Li
,
J. Y.
Xu
,
X. O.
Cai
,
R. L.
Liu
,
Y. J.
Li
,
Q. F.
Zhao
, and
Q. N.
Li
,
Environ. Toxicol.
22
,
415
(
2007
).
21.
R.
Phillips
and
S. R.
Quake
,
Phys. Today
59
,
38
(
2006
).
23.
R. M.
Crist
,
J. H.
Grossman
,
A. K.
Patri
,
S. T.
Stern
,
M. A.
Dobrovolskaia
,
P. P.
Adiseshaiah
,
J. D.
Clogston
, and
S. E.
McNeil
,
Integr. Biol.
5
,
66
(
2013
).
24.
J. M.
Pettibone
,
J.
Gigault
, and
V. A.
Hackley
,
ACS Nano
7
,
2491
(
2013
).
25.
D. R.
Baer
,
P. G.
Tratnyek
,
Y.
Qiang
,
J. E.
Amonette
,
J. C.
Linehan
,
V.
Sarathy
,
J. T.
Nurmi
,
C. M.
Wang
, and
J.
Antony
, in
Environmental Applications of Nanomaterials:Synthesis, Sorbents, and Sensors,
edited by
G.
Fryxell
and
G.
Cao
(
Imperial College Press
,
London
,
2007
), Chap. 3, pp.
49
86
.
26.
J. T.
Nurmi
,
V.
Sarathy
,
P. T.
Tratnyek
,
D. R.
Baer
,
J. E.
Amonette
, and
A.
Karkamkar
,
J. Nanopart. Res.
13
,
1937
(
2011
).
27.
J. T.
Nurmi
et al,
Environ. Sci. Technol.
39
,
1221
(
2005
).
28.
V.
Sarathy
,
P. G.
Tratnyek
,
J. T.
Nurmi
,
D. R.
Baer
,
J. E.
Amonette
,
C. L.
Chun
,
R. L.
Penn
, and
E. J.
Reardon
,
J. Phys. Chem. C
112
,
2286
(
2008
).
29.
A. S.
Karakoti
,
S.
Kuchibhatla
,
K. S.
Babu
, and
S.
Seal
,
J. Phys. Chem. C
111
,
17232
(
2007
).
30.
A. S.
Karakoti
et al,
Surf. Interface Anal.
44
,
882
(
2012
).
31.
A. S.
Karakoti
,
S.
Singh
,
A.
Kumar
,
M.
Malinska
,
S.
Kuchibhatla
,
K.
Wozniak
,
W. T.
Self
, and
S.
Seal
,
J. Am. Chem. Soc.
131
,
14144
(
2009
).
32.
S. V. N. T.
Kuchibhatla
,
A. S.
Karakoti
,
D. R.
Baer
,
S.
Samudrala
,
M. H.
Engelhard
,
J. E.
Amonette
,
S.
Thevuthasan
, and
S.
Seal
,
J. Phys. Chem. C
116
,
14108
(
2012
).
33.
C. T.
Campbell
and
C. H. F.
Peden
,
Science
309
,
713
(
2005
).
34.
M.
Das
,
S.
Patil
,
N.
Bhargava
,
J. F.
Kang
,
L. M.
Riedel
,
S.
Seal
, and
J. J.
Hickman
,
Biomaterials
28
,
1918
(
2007
).
35.
A. S.
Karakoti
,
N. A.
Monteiro-Riviere
,
R.
Aggarwal
,
J. P.
Davis
,
R. J.
Narayan
,
W. T.
Self
,
J.
McGinnis
, and
S.
Seal
,
JOM
60
,
33
(
2008
).
36.
Z. P.
Shao
and
S. M.
Haile
,
Nature
431
,
170
(
2004
).
37.
L.
Wu
,
H. J.
Wiesmann
,
A. R.
Moodenbaugh
,
R. F.
Klie
,
Y.
Zhu
,
D. O.
Welch
, and
M.
Suenaga
,
Phys. Rev. B
69
,
125415
(
2004
).
38.
J. Y.
Ma
,
H.
Zhao
,
R. R.
Mercer
,
M.
Barger
,
M.
Rao
,
T.
Meighan
,
D.
Schwegler-Berry
,
V.
Castranova
, and
J. K.
Ma
,
Nanotoxicology
5
,
312
(
2011
).
39.
J. M.
Perez
,
A.
Asati
,
S.
Nath
, and
C.
Kaittanis
,
Small
4
,
552
(
2008
).
40.
41.
B. K.
Pierscionek
,
Y. B.
Li
,
A. A.
Yasseen
,
L. M.
Colhoun
,
R. A.
Schachar
, and
W.
Chen
,
Nanotechnology
21
,
035102
(
2010
).
42.
M.
Safi
,
H.
Sarrouj
,
O.
Sandre
,
N.
Mignet
, and
J. F.
Berret
,
Nanotechnology
21
,
145103
(
2010
).
43.
44.
45.
H. F.
Zhang
,
X. A.
He
,
Z. Y.
Zhang
,
P.
Zhang
,
Y. Y.
Li
,
Y. H.
Ma
,
Y. S.
Kuang
,
Y. L.
Zhao
, and
Z. F.
Chai
,
Environ. Sci. Technol.
45
,
3725
(
2011
).
46.
H.
Zhang
et al,
J. Am. Chem. Soc.
134
,
15790
(
2012
).
47.
I. A.
Mudunkotuwa
,
J. M.
Pettibone
, and
V. H.
Grassian
,
Environ. Sci. Technol.
46
,
7001
(
2012
).
48.
H. L.
Karlsson
,
P.
Cronholm
,
J.
Gustafsson
, and
L.
Möller
,
Chem. Res. Toxicol.
21
,
1726
(
2008
).
49.
J. E.
Castle
and
C. J.
Powell
,
Surf. Interface Anal.
36
,
225
(
2004
).
50.
M.
Schulze
,
K.
Bolwin
,
E.
Gülzow
, and
W.
Schnurnberger
,
Fresen J. Anal. Chem.
353
,
778
(
1995
).
51.
G. B.
Hoflund
and
M. L.
Everett
,
J. Phys. Chem. B
108
,
15721
(
2004
).
52.
C. J.
Johnston
,
J. N.
Finkelstein
,
R.
Gelein
,
R.
Baggs
and
G.
Oberdörster
,
Toxicol. Appl. Pharm.
140
,
154
(
1996
).
53.
K.
Pulskamp
,
S.
Diabaté
, and
H. F.
Krug
,
Toxicol. Lett.
168
,
58
(
2007
).
54.
D. J.
Gaspar
,
M. H.
Engelhard
,
M. C.
Henry
, and
D. R.
Baer
,
Surf. Interface Anal.
37
,
417
(
2005
).
55.
S. D.
Techane
,
D. R.
Baer
, and
D. G.
Castner
,
Anal. Chem.
83
,
6704
(
2011
).
56.
J.
Jie
,
W.
Zhang
,
K.
Peng
,
G.
Yuan
,
C. S.
Lee
, and
S.-T.
Lee
,
Adv. Funct. Mater.
18
,
3251
(
2008
).
57.
C. F.
Jones
,
D. B.
Castner
, and
D. W.
Grainger
, in
Handbook of Immunological Properties of Engineered Nanomaterials
(
World Science
,
London
,
2012
),
117
pp.
58.
T. D.
Vaden
,
C.
Song
,
R. A.
Zaveri
,
D.
Imre
, and
A.
Zelenyuk
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
6658
(
2010
).
59.
E. C.
Scher
,
L.
Manna
, and
A. P.
Alivisatos
,
Philos. Trans. Roy. Soc. A
361
,
241
(
2003
).
60.
D. R.
Baer
,
J. Surf. Anal.
17
,
163
(
2011
).
61.
K.
Moore
,
B.
Forsberg
,
D. R.
Baer
,
W. A.
Arnold
, and
R. L.
Penn
,
J. Environ. Eng.-ASCE
137
,
889
(
2011
).
62.
P. P.
Adiseshaiah
,
J. B.
Hall
, and
S. E.
McNeil
,
Nanomed. Nanobiol.
2
,
99
(
2010
).
63.
G. A.
Somorjai
and
J. Y.
Park
,
Top. Catal.
49
,
126
(
2008
).
65.
S.
Helveg
,
C.
Lopez-Cartes
,
J.
Sehested
,
P. L.
Hansen
,
B. S.
Clausen
,
J. R.
Rostrup-Nielsen
,
F.
Abild-Pedersen
, and
J. K.
Norskov
,
Nature
427
,
426
(
2004
).
66.
M. J.
Yacaman
,
J. A.
Ascencio
,
H. B.
Liu
, and
J.
Gardea-Torresdey
,
J. Vac. Sci. Technol. B
19
,
1091
(
2001
).
67.
M. R.
Wiesner
,
G. V.
Lowry
,
E.
Casman
,
P. M.
Bertsch
,
C. W.
Matson
,
R. T.
Di Giulio
,
J.
Liu
, and
M. F.
Hochella
,
ACS Nano
5
,
8466
(
2011
).
68.
T. J.
Pennycook
,
J. R.
McBride
,
S. J.
Rosenthal
,
S. J.
Pennycook
, and
S. T.
Pantelides
,
Nano Lett.
12
,
3038
(
2012
).
69.
M. F.
Hochella
,
Earth Planet Sc. Lett.
203
,
593
(
2002
).
70.
E. M.
Hotze
,
T.
Phenrat
, and
G. V.
Lowry
,
J. Environ. Qual.
39
,
1909
(
2010
).
71.
I.
Lynch
,
T.
Cedervall
,
M.
Lundqvist
,
C.
Cabaleiro-Lago
,
S.
Linse
, and
K. A.
Dawson
,
Adv. Colloid. Interface
134–135
,
167
(
2007
).
73.
H. Z.
Zhang
,
B.
Gilbert
,
F.
Huang
, and
J. F.
Banfield
,
Nature
424
,
1025
(
2003
).
74.
J.
Cohen
,
G.
DeLoid
,
G.
Pyrgiotakis
, and
P.
Demokritou
,
Nanotoxicology
7
,
417
(
2013
).
75.
J. M.
Krier
,
W. D.
Michalak
,
L. R.
Baker
,
K.
An
,
K.
Komvopoulos
, and
G. A.
Somorjai
,
J. Phys. Chem. C
116
,
17540
(
2012
).
76.
B. L.
Frankamp
,
A. K.
Boal
,
M. T.
Tuominen
, and
V. M.
Rotello
,
J. Am. Chem. Soc.
127
,
9731
(
2005
).
77.
B. M.
Reinhard
,
M.
Siu
,
H.
Agarwal
,
A. P.
Alivisatos
, and
J.
Liphardt
,
Nano Lett.
5
,
2246
(
2005
).
78.
D. R.
Baer
and
M. H.
Engelhard
,
J. Electron. Spectrosc.
178–179
,
415
(
2010
).
79.
D. R.
Baer
,
D. J.
Gaspar
,
P.
Nachimuthu
,
S. D.
Techane
, and
D. G.
Castner
,
Anal. Bioanal. Chem.
396
,
983
(
2010
).
80.
J. P.
Zhao
,
Z. Y.
Chen
,
X. J.
Cai
, and
J. W.
Rabalais
,
J. Vac. Sci. Technol. B
24
,
1104
(
2006
).
81.
D. R.
Baer
,
M. H.
Engelhard
,
D. J.
Gaspar
,
D. W.
Matson
,
K. H.
Pecher
,
J. R.
Williams
, and
C. M.
Wang
,
J. Surf. Anal.
12
,
101
(
2005
).
82.
C. M.
Wang
,
D. R.
Baer
,
J. E.
Amonette
,
M. H.
Engelhard
,
J. J.
Antony
, and
Y.
Qiang
,
Ultramicroscopy
108
,
43
(
2007
).
83.
D. J.
Gaspar
,
A.
Laskin
,
W.
Wang
,
S. W.
Hunt
, and
B. J.
Finlayson-Pitts
,
Appl. Surf. Sci.
231
,
520
(
2004
).
84.
P.
Kingshott
,
G.
Andersson
,
S. L.
McArthur
, and
H. J.
Griesser
,
Curr. Opin. Chem. Biol.
15
,
667
(
2011
).
85.
E.
Amstad
,
M.
Textor
, and
E.
Reimhult
,
Nanoscale
3
,
2819
(
2011
).
86.
D. R.
Baer
,
Surf. Interface. Anal.
44
,
1305
(
2012
).
87.
International Organization for Standards, “Surface chemical analysis—Characterization of nanostructured materials,” ISO/TR 14187:2011(
2011
).
88.
C. J.
Powell
,
J. Vac. Sci. Technol. A
21
,
S42
(
2003
).
89.
A.
Frydman
,
M.
Schmal
,
D. B.
Castner
, and
C. T.
Campbell
,
J. Catal.
157
,
133
(
1995
).
90.
A. G.
Shard
,
W. J.
Wang
, and
S. J.
Spencer
,
Surf. Interface Anal.
41
,
541
(
2009
).
91.
D. Q.
Yang
,
J. N.
Gillet
,
M.
Meunier
, and
E.
Sacher
,
J. Appl. Phys.
97
,
024303
(
2005
).
92.
D. Q.
Yang
,
M.
Meunier
, and
E.
Sacher
,
Appl. Surf. Sci.
173
,
134
(
2001
).
93.
D. Q.
Yang
and
E.
Sacher
, “
X-ray photoelectron spectroscopy characterization of Nanoparticles (NPs): I. Dimensional effects
,”
2008
, http://www.scribd.com/doc/2194883/Nano-XPS-nanost-1
94.
95.
M.
Mohai
,
Surf. Interface Anal.
36
,
828
(
2004
).
96.
M.
Mohai
and
I.
Bertoti
,
Surf. Interface Anal.
36
,
805
(
2004
).
97.
M.
Mohai
,
E.
Kiss
,
A.
Toth
,
J.
Szalma
, and
I.
Bertoti
,
Surf. Interface Anal.
34
,
772
(
2002
).
98.
M.
Mohai
, XPS-MultiQuant, http://www.chemres.hu/aki/XMQpages/XMQhome.htm (
2013
).
99.
N. S.
McIntyre
,
H. Y.
Nie
,
A. P.
Grosvenor
,
R. D.
Davidson
, and
D.
Briggs
,
Surf. Interface Anal.
37
,
749
(
2005
).
100.
101.
S.
Hajati
,
S.
Coultas
,
C.
Blornfield
, and
S.
Tougaard
,
Surf. Interface Anal.
40
,
688
(
2008
).
102.
S.
Hajati
,
V.
Zaporojtchenko
,
F.
Faupel
, and
S.
Tougaard
,
Surf. Sci.
601
,
3261
(
2007
).
103.
W.
Smekal
,
W. S. M.
Werner
, and
C. J.
Powell
,
Surf. Interface Anal.
37
,
1059
(
2005
).
104.
A.
Frydman
,
D. B.
Castner
,
M.
Schmal
, and
C. T.
Campbell
,
J. Catal.
152
,
164
(
1995
).
105.
A. G.
Shard
,
J. Phys. Chem. C
116
,
16806
(
2012
).
107.
NIST Standard Ref. Database 82—NIST Electron Effective-Attenuation-Length Database
,U.S. Department of Commerce, National Institute of Standards and Technology (
2011
); http://www.nist.gov/srd/nist82.cfm
108.
R. G.
Haverkamp
,
A. T.
Marshall
, and
B. C. C.
Cowie
,
Surf. Interface Anal.
43
,
847
(
2011
).
109.
M. P.
Seah
,
Surf. Interface Anal.
44
,
1353
(
2012
).
111.
Y.
Liang
,
A. S.
Lea
,
D. E.
McCready
and
P.
Meethunkij
, in
State-of-the-Art Application of Surface and Interface Analysis Methods to Environmental Material Interactions: In Honor of James E. Castle's 65th
edited by
D. R.
Baer
,
C. R.
Clayton
,
G. D.
Davis
and
G. P.
Halada
(
The Electrochemical Society
,
Washington DC
,
2001
), Vol. 2001-5, pp.
125
.
112.
A. L.
Koh
,
C. M.
Shachaf
,
S.
Elchuri
,
G. P.
Nolan
, and
R.
Sinclair
,
Ultramicroscopy
109
,
111
(
2008
).
113.
S.
Ninomiya
,
K.
Ichiki
,
H.
Yamada
,
Y.
Nakata
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Rapid Commun. Mass Spectrosc.
23
,
3264
(
2009
).
114.
V. S.
Smentkowski
,
G.
Zorn
,
A.
Misner
,
G.
Parthasarathy
,
A.
Couture
,
E.
Tallarek
, and
B.
Hagenhoff
,
J. Vac. Sci. Technol. A
31
,
030601
(
2013
).
115.
B. D.
Ratner
,
D. G.
Castner
,
J.
Brison
,
C.
Barnes
, and
R.
Daneshcvar
, http://www.semineedle.com/system/files/BuddyRatner_5-14-09.pdf?snc=5963
116.
Y. P.
Kim
,
E.
Oh
,
Y. H.
Oh
,
D. W.
Moon
,
T. G.
Lee
, and
H. S.
Kim
,
Angew. Chem. Int. Edit.
46
,
6816
(
2007
).
117.
D.
Shi
,
Y.
Zhou
,
S. X.
Wang
,
W. J.
Van Ooij
,
L. M.
Wang
, and
J. G.
Zhao
,
MRS Symp.
635
,
C4
28
(
2001
).
118.
R.
Borade
,
A.
Sayari
,
A.
Adnot
, and
S.
Kaliaguine
,
J. Phys. Chem.
94
,
5989
(
1990
).
119.
D. J.
Gaspar
,
A.
Laskin
,
W.
Wang
,
S. W.
Hunt
, and
B. J.
Finlayson-Pitts
,
Appl. Surf. Sci.
231
,
520
(
2004
).
120.
M. P.
Seah
,
Surf. Interface Anal.
44
,
208
(
2012
).
121.
L.
Yang
,
M. P.
Seah
,
E. H.
Anstis
,
I. S.
Gilmore
, and
J. L. S.
Lee
,
J. Phys. Chem. C
116
,
9311
(
2012
).
122.
R.
Kersting
,
D.
Breitenstein
,
B.
Hagenhoff
,
M.
Fartmann
,
D.
Heller
,
T.
Grehl
,
P.
Brüner
, and
E.
Niehuis
,
Surf. Interface Anal.
45
,
503
(
2013
).
123.
J.
Scalf
and
P.
West
, “Part I: Introduction to nanoparticle characterization with AFM,” www.nanoparticles.org/pdf/Scalf-West.pdf
124.
P.
Klapetek
,
M.
Valtr
,
D.
Necas
,
S.
Salyk
, and
P.
Dzik
,
Nanoscale Res. Lett.
6
,
514
(
2011
).
125.
ASTM
,
ASTM E2382-04 Guide to Scanner and Tip Related Artifacts in Scanning Tunneling Microscopy and Atomic Force Microscopy
(
ASTM
,
West Conshohocken, PA
,
2004
).
126.
P. C.
Braga
and
D.
Ricci
,
Atomic Force Microscopy
(
Humana Press
,
New York
,
2004
).
127.
128.
I. U.
Vakarelski
,
S. C.
Brown
,
B. M.
Moudgil
, and
K.
Higashitani
,
Adv. Powder Tech.
18
,
605
(
2007
).
129.
S.
Gupta
,
P.
Brouwer
,
S.
Bandyopadhyay
,
S.
Patil
,
R.
Briggs
,
J.
Jain
, and
S.
Seal
,
J. Nanosci. Nanotechnol.
5
,
1101
(
2005
).
130.
D. R.
Baer
,
Surf. Interface Anal.
39
,
283
(
2007
).
131.
133.
134.
H.
Wang
,
E. C. Y.
Yan
,
E.
Borguit
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
259
,
15
(
1996
).
135.
T.
Kawai
,
D. J.
Neivandt
, and
P. B.
Davies
,
J. Am. Chem. Soc.
122
,
12031
(
2000
).
136.
C.
Weeraman
,
A. K.
Yatawara
,
A. N.
Bordenyuk
, and
A. V.
Benderskii
,
J. Am. Chem. Soc.
128
,
14244
(
2006
).
137.
C. Y.
Wang
,
H.
Groenzin
, and
M. J.
Shultz
,
J. Phys. Chem. B
108
,
265
(
2004
).
138.
M. T.
Frederick
,
J. L.
Achtyl
,
K. E.
Knowles
,
E. A.
Weiss
, and
F. M.
Geiger
,
J. Am. Chem. Soc.
133
,
7476
(
2011
).
139.
S.
Baldelli
,
A. S.
Eppler
,
E.
Anderson
,
Y. R.
Shen
, and
G. A.
Somorjai
,
J. Chem. Phys.
113
,
5432
(
2000
).
140.
G. A.
Somorjai
,
S. K.
Beaumont
, and
S.
Alayoglu
,
Angew. Chem. Int. Edit.
50
,
10116
(
2011
).
141.
S.
Roke
,
W. G.
Roeterdink
,
J.
Wijnhoven
,
A. V.
Petukhov
,
A. W.
Kleyn
, and
M.
Bonn
,
Phys. Rev. Lett.
91
,
258302
(
2003
).
142.
A. M.
Buchbinder
,
N. A.
Ray
,
J.
Lu
,
R. P.
Van Duyne
,
P. C.
Stair
,
E.
Weitz
, and
F. M.
Geiger
,
J. Am. Chem. Soc.
133
,
17816
(
2011
).
143.
Z.
Lu
,
A. S.
Karakoti
,
L.
Velarde
,
W.
Wang
,
P.
Yang
,
S.
Thevuthasan
, and
H.
Wang
, “
Dissociative binding of carboxylic acid ligand on nano ceria surface in aqueous solution: A joint in situ characterization and first-principles study
,”
J. Phys. Chem. C
(submitted).
145.
E. M.
Purcell
,
N.
Bloembergen
, and
R. V.
Pound
,
Phys. Rev.
70
,
988
(
1946
).
146.
M. H.
Levitt
,
Spin Dynamics: Basics of Nulcear Magnetic Resonance
(
Wiley
,
Chichester
,
2001
).
147.
C. A.
Fyfe
,
Solid State NMR for Chemists
(
CFC Press
,
Guelph
,
1984
).
148.
P.
Fiurasek
and
L.
Reven
,
Langmuir
23
,
2857
(
2007
).
149.
S.
Sadasivan
,
D.
Khushalanib
, and
S.
Mann
,
J. Mater. Chem.
13
,
1023
(
2003
).
150.
B.
Zhang
and
B.
Yan
,
Anal. Bioanal. Chem.
396
,
973
(
2010
).
151.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Clarendon Press
,
Oxford
,
1961
).
152.
T. P.
Das
and
E. L.
Hahn
,
Nuclear Quadrupole Resonance Spectroscopy
(
Academic Press
,
New York
,
1964
).
153.
E. O.
Stejskal
and
J.
Schaefer
,
J. Magn. Reson.
28
,
105
(
1977
).
154.
D. R.
Baer
et al, in
Handbook of Deposition Technologies for Films and Coatings
, edited by
P. M.
Martin
(
William Andrew Press
,
Oxford, UK
,
2009
).
155.
V. R.
Stamenkovic
,
B. S.
Mun
,
M.
Arenz
,
K. J. J.
Mayrhofer
,
C. A.
Lucas
,
G.
Wang
,
P. N.
Ross
, and
N. M.
Markovic
,
Nat. Mater.
6
,
241
(
2007
).
156.
W. P. A.
Jansen
,
J. M. A.
Harmsen
,
A. W.
Denier v.d. Gon
,
J. H. B. J.
Hoebink
,
J. C.
Schouten
, and
H. H.
Brongersma
,
J. Catal.
204
,
420
(
2001
).
157.
A.
Rafati
,
R.
ter Veen
, and
D. G.
Castner
,
Surf. Interface Anal.
158.
P. L.
Grande
, “Recent advances of MEIS for near surface analysis,”http://www.slideshare.net/Engenharia.de.Superficies/recent-advances-of-meis-for-near-surface-analysis(
2011
).
159.
Y.
Wang
,
K. S.
Chen
,
J.
Mishler
,
S. C.
Cho
, and
X. C.
Adroher
,
Appl. Energy
88
,
981
(
2011
).
160.
P.
Mani
,
R.
Srivastava
, and
P.
Strasser
,
J. Phys. Chem. C
112
,
2770
(
2008
).
161.
I. E. L.
Stephens
,
A. S.
Bondarenko
,
U.
Gronbjerg
,
J.
Rossmeisl
, and
I.
Chorkendorff
,
Energy Environ. Sci.
5
,
6744
(
2012
).
162.
C.
Wang
et al,
J. Phys. Chem. Lett.
3
,
1668
(
2012
).
163.
P.
Milani
,
P.
Piseri
,
E.
Barborini
, and
S.
Iannotta
,
Mater. Sci. Forum
195
,
43
(
1995
).
164.
S.
Pratontep
,
S. J.
Carroll
,
C.
Xirouchaki
,
M.
Streun
, and
R. E.
Palmer
,
Rev. Sci. Instrum.
76
,
045103
(
2005
).
165.
U.
Heiz
,
F.
Vanolli
,
L.
Trento
, and
W. D.
Schneider
,
Rev. Sci. Instrum.
68
,
1986
(
1997
).
166.
A. I.
Ayesh
,
N.
Qamhieh
,
H.
Ghamlouche
,
S.
Thaker
, and
M.
El-Shaer
,
J. Appl. Phys.
107
,
034317
(
2010
).
167.
A.
Majumdar
,
D.
Kopp
,
M.
Ganeva
,
D.
Datta
,
S.
Bhattacharyya
, and
R.
Hippler
,
Rev. Sci. Instrum.
80
,
095103
(
2009
).
168.
H.
Haberland
,
M.
Karrais
,
M.
Mall
, and
Y.
Thurner
,
J. Vac. Sci. Technol. A
10
,
3266
(
1992
).
169.
B.
Klipp
,
M.
Grass
,
J.
Muller
,
D.
Stolcic
,
U.
Lutz
,
G.
Gantefor
,
T.
Schlenker
,
J.
Boneberg
, and
P.
Leiderer
,
Appl. Phys. A
73
,
547
(
2001
).
170.
V.
Franchetti
,
B. H.
Solka
,
W. E.
Baitinger
,
J. W.
Amy
, and
R. G.
Cooks
,
Int. J. Mass Spectrom.
23
,
29
(
1977
).
171.
J.
Cyriac
,
T.
Pradeep
,
H.
Kang
,
R.
Souda
, and
R. G.
Cooks
,
Chem. Rev.
112
,
5356
(
2012
).
172.
G. E.
Johnson
,
T.
Priest
, and
J.
Laskin
,
ACS Nano
6
,
573
(
2012
).
173.
G. E.
Johnson
,
C.
Wang
,
T.
Priest
, and
J.
Laskin
,
Anal. Chem.
83
,
8069
(
2011
).
174.
G. E.
Johnson
,
Q. C.
Hu
, and
J.
Laskin
,
Annu. Rev. Anal. Chem.
4
,
83
(
2011
).
175.
G. E.
Johnson
,
T.
Priest
, and
J.
Laskin
,
J. Phys. Chem. C
116
,
24977
(
2012
).
176.
F.
Claeyssens
,
S.
Pratontep
,
C.
Xirouchaki
, and
R. E.
Palmer
,
Nanotechnology
17
,
805
(
2006
).
177.
W. E.
Kaden
,
T. P.
Wu
,
W. A.
Kunkel
, and
S. L.
Anderson
,
Science
326
,
826
(
2009
).
178.
K. A.
Wepasnick
,
X.
Li
,
T.
Mangler
,
S.
Noessner
,
C.
Wolke
,
M.
Grossmann
,
G.
Gantefoer
,
D. H.
Fairbrother
, and
K. H.
Bowen
,
J. Phys. Chem. C
115
,
12299
(
2011
).
179.
L.
Martinez
,
M.
Diaz
,
E.
Roman
,
M.
Ruano
,
D.
Llamosa
, and
Y.
Huttel
,
Langmuir
28
,
11241
(
2012
).
180.
S. H.
Baker
,
S. C.
Thornton
,
A. M.
Keen
,
T. I.
Preston
,
C.
Norris
,
K. W.
Edmonds
, and
C.
Binns
,
Rev. Sci. Instrum.
68
,
1853
(
1997
).
181.
ASTM, E1078-09, Standard Guide for Specimen Preparation and Mounting in Surface Analysis (
2006
).
182.
International Organization for Standards, “Surface chemical analysis—Guidelines for preparation and mounting of specimens for analysis,” ISO 18116:2005(
2005
).
183.
D. S.
Jensen
et al,
Surf. Interface Anal.
45
,
1273
(
2013
).
You do not currently have access to this content.