Most atomic layer deposition (ALD) processes for metal oxides involve the use of a metal precursor and an oxygen source, such as H2O, O3, or an O2 plasma. These ALD processes lead to the formation of an undesirable interfacial oxide during deposition on semiconductor surfaces. As an alternative, some metal oxides other than TiO2 have been deposited using metal alkoxides as the oxygen source. In this article, we report on the ALD of TiO2 using TiCl4 and titanium tetraisopropoxide (TTIP) as precursors. Our surface infrared spectroscopy data shows that over the temperature range of 150–250 °C and the duration of a typical ALD cycle (∼1–10 s), in both half-reaction cycles, the surface reaction mechanism is dominated by alkyl-transfer from the TTIP ligands to Ti-Cl species. At 250 °C, which is the onset for TTIP thermal decomposition, the contribution of the direct decomposition reaction to film growth is negligible. The growth per cycle, ∼0.7 Å at 200 °C, is higher than H2O-based ALD of TiO2 from either TiCl4 or TTIP, but similar to O2-plasma-based processes. X-ray photoelectron spectroscopy data show TiO2 films with only the +4 oxidation state of Ti, and the Cl content is estimated to be 2.5–3.5%. UV–Vis spectroscopy shows a band gap of ∼3.0 eV, which is comparable to the values reported in the literature for amorphous TiO2 thin films.

1.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
2.
O.
Sneh
,
R. B.
Clark-Phelps
,
A. R.
Londergan
,
J.
Winkler
, and
T. E.
Seidel
,
Thin Solid Films
402
,
248
(
2002
).
3.
Q.
Xie
 et al,
Semicond. Sci. Technol.
27
,
074012
(
2012
).
4.
P.
Ardalan
,
E. R.
Pickett
,
J. S.
Harris
,
A. F.
Marshall
, and
S. F.
Bent
,
Appl. Phys. Lett.
92
,
252902
(
2008
).
5.
S.
Swaminathan
,
M.
Shandalov
,
Y.
Oshima
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
96
,
082904
(
2010
).
6.
M. K.
Bera
,
C.
Mahata
,
A. K.
Chakraborty
,
S. K.
Nandi
,
J. N.
Tiwari
,
J.
Hung
, and
C. K.
Maiti
,
Semicond. Sci. Technol.
22
,
1352
(
2007
).
7.
Q.
Xie
,
D.
Deduytsche
,
M.
Schaekers
,
M.
Caymax
,
A.
Delabie
,
X.-P.
Qu
, and
C.
Detavernier
,
Appl. Phys. Lett.
97
,
112905
(
2010
).
8.
L.
Wu
and
E.
Eisenbraun
,
J. Vac. Sci. Technol. B
25
,
2581
(
2007
).
9.
D.
Kueck
,
P.
Leber
,
A.
Schmidt
,
G.
Speranza
, and
E.
Kohn
,
Diamond Relat. Mater.
19
,
932
(
2010
).
10.
A. A.
Dameron
,
D.
Seghete
,
B. B.
Burton
,
S. D.
Davidson
,
A. S.
Cavanagh
,
J. A.
Bertrand
, and
S. M.
George
,
Chem. Mater.
20
,
3315
(
2008
).
11.
M.
Leskelä
and
M.
Ritala
,
Angew. Chem. Int. Ed.
42
,
5548
(
2003
).
12.
M.
Ritala
,
M.
Leskelä
,
E.
Nykänen
,
P.
Soininen
, and
L.
Niinistö
,
Thin Solid Films
225
,
288
(
1993
).
13.
B. B.
Burton
,
S. W.
Kang
,
S. W.
Rhee
, and
S. M.
George
,
J. Phys. Chem. C
113
,
8249
(
2009
).
14.
V. R.
Rai
and
S.
Agarwal
,
J. Phys. Chem. C
112
,
9552
(
2008
).
15.
V. R.
Rai
and
S.
Agarwal
,
J. Phys. Chem. C
113
,
12962
(
2009
).
16.
V. R.
Rai
,
V.
Vandalon
, and
S.
Agarwal
,
Langmuir
26
,
13732
(
2010
).
17.
V. R.
Rai
,
V.
Vandalon
, and
S.
Agarwal
,
Langmuir
28
,
350
(
2012
).
18.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P.
Raisanen
,
M.
Leskelä
,
T.
Sajavaara
, and
J.
Keinonen
,
Science
288
,
319
(
2000
).
19.
A.
Rahtu
and
M.
Ritala
,
Langmuir
18
,
10046
(
2002
).
20.
C.
Mui
and
C. B.
Musgrave
,
J. Phys. Chem. B
108
,
15150
(
2004
).
21.
A.
Rahtu
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
13
,
1528
(
2001
).
22.
P.
Raisanen
,
M.
Ritala
, and
M.
Leskel
,
J. Mater. Chem.
12
,
1415
(
2002
).
23.
K.
Kukli
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
12
,
1914
(
2000
).
24.
W.
Kim
,
S.
Kang
, and
S.
Rhee
,
J. Vac. Sci. Technol. A
21
,
L16
(
2003
).
25.
V. R.
Rai
and
S.
Agarwal
,
J. Vac. Sci. Technol. A
30
,
01A158
(
2012
).
26.
A.
Kanta
,
R.
Sedev
, and
J.
Ralston
,
Langmuir
21
,
2400
(
2005
).
27.
Z.
Huang
,
P.
Wang
, and
A.
MacDiarmid
,
Langmuir
13
,
6480
(
1997
).
28.
N. G.
Kubala
,
P. C.
Rowlette
, and
C. A.
Wolden
,
J. Phys. Chem. C
113
,
16307
(
2009
).
29.
Z.
Wang
and
S.
Sun
,
Chinese J. Polym. Sci.
6
,
359
(
1988
).
31.
K. L.
Siefering
and
G. L.
Griffin
,
J. Electrochem. Soc.
137
,
1206
(
1990
).
32.
Y.-M.
Wu
,
D. C.
Bradley
, and
R. M.
Nix
,
Appl. Surf. Sci.
64
,
21
(
1993
).
33.
K. L.
Siefering
and
G. L.
Griffin
,
J. Electrochem. Soc.
137
,
814
(
1990
).
34.
G.
Battiston
,
R.
Gerbasi
, and
M.
Porchia
,
Thin Solid Films
239
,
186
(
1994
).
35.
H.
Komiyama
,
T.
Kanai
, and
H.
Inoue
,
Chem. Lett.
13
,
1283
(
1984
).
36.
S.
Cho
,
C.
Chung
, and
S. H.
Moon
,
J. Electrochem. Soc.
148
,
C599
(
2001
).
37.
S.
Bourgeois
,
F.
Jomard
, and
M.
Perdereau
,
Surf. Sci.
279
,
349
(
1992
).
38.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
, and
P.
Haussalo
,
Chem. Mater.
5
,
1174
(
1993
).
39.
A.
Sonnenfeld
,
P. R.
von Sonnenfeld
, and
R.
Hauert
,
Plasma Chem. Plasma Process.
26
,
319
(
2006
).
40.
E.
Magni
and
G.
Somorjai
,
J. Phys. Chem.
100
,
14786
(
1996
).
41.
S. R.
Carlo
,
C. C.
Perry
,
J.
Torres
,
A. J.
Wagner
,
C.
Vecitis
, and
D. H.
Fairbrother
,
Appl. Surf. Sci.
195
,
93
(
2002
).
42.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Physical Electronics, Inc.
,
Minnesota
,
1995
).
43.
V. M.
Naik
,
D.
Haddad
,
R.
Naik
,
J.
Benci
, and
G. W.
Auner
,
Mater. Res. Soc. Symp. Proc.
755
,
DD11
12
(
2002
).
You do not currently have access to this content.