Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO2/SiO2 interfaces on Ge-based CMOS devices, and (ii) strain study on La0.7Ca0.3MnO3 ultrathin films grown on SrTiO3(001) substrate.

1.
J.
Rubio-Zuazo
and
G. R.
Castro
,
J. Electron Spectrosc.
184
,
384
(
2011
).
2.
J.
Rubio-Zuazo
and
G. R.
Castro
,
Surf. Interface Anal.
40
,
1438
(
2008
).
3.
Proceedings of the Workshop on Hard X-Ray Photoelectron Spectroscopy
, Grenoble, France, 11–12 September 2003, edited by
J.
Zegenhagen
and
C.
Kunz
(2005), Nuclear Instruments and Methods in Physics Research A, Vol. 547, p.
1
.
4.
L.
Kover
,
J. Electron Spectrosc.
178–179
,
241
(
2010
).
5.
K.
Kobayashi
,
Nucl. Instrum. Meth. A
601
,
32
(
2009
).
6.
G. R.
Castro
,
J. Synchrotron Radiat.
5
,
657
(
1998
).
7.
J.
Rubio-Zuazo
and
G. R.
Castro
,
Nucl. Instrum. Meth. A
547
,
64
(
2005
).
8.
J.
Rubio-Zuazo
,
M.
Escher
,
M.
Merkel
, and
G. R.
Castro
,
Rev. Sci. Instrum.
81
,
043304
(
2010
).
9.
J.
Rubio-Zuazo
and
G. R.
Castro
,
J. Electron Spectrosc.
184
,
440
(
2011
).
10.
C. O.
Chui
,
H.
Kim
,
D.
Chi
,
B. B.
Triplett
,
P. C.
McIntyre
, and
K. C.
Saraswat
,
Tech. Dig. - Int. Electron Devices Meet.
2002
,
437
.
11.
C. O.
Chui
,
H.
Kim
,
P. C.
McIntyre
, and
K. C.
Saraswat
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
18
3
.
12.
A.
Ritenour
,
S.
Yu
,
M. L.
Lee
,
N.
Lu
,
W.
Bai
,
A.
Pitera
,
E. A.
Fitzgerald
,
D. L.
Kwong
, and
D. A.
Antoniadis
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
433
.
13.
A.
Ritenour
,
A.
Khakifirooz
,
D. A.
Antoniadis
,
R. Z.
Lei
,
W.
Tsai
,
A.
Dimoulas
,
G.
Mavrou
, and
Y.
Panayiotatos
,
Appl. Phys. Lett.
88
,
132107
(
2006
).
14.
N.
Wu
 et al,
Appl. Phys. Lett.
84
,
3741
(
2004
).
15.
N.
Wu
,
Q.
Zhang
,
C.
Zhu
,
D. S. H.
Chan
,
M. F.
Li
,
N.
Balasubramanian
,
A.
Chin
, and
D. L.
Kwong
,
Appl. Phys. Lett.
85
,
4127
(
2004
).
16.
N.
Wu
, et al,
Electron Devices Lett.
25
,
631
(
2004
).
17.
K.
Kobayashi
 et al,
Appl. Phys. Lett.
83
,
1005
(
2003
).
18.
C.
Dallera
,
F.
Fracassi
,
L.
Braicovich
,
G.
Scarel
,
C.
Wiemer
,
M.
Fanciulli
,
G.
Pavia
, and
B. C. C.
Cowie
,
Appl. Phys. Lett.
89
,
183521
(
2006
).
19.
J.
Rubio-Zuazo
and
G. R.
Castro
,
J. Electron Spectrosc.
180
,
27
(
2010
).
20.
L.
Wu
 et al,
Appl. Phys. Lett.
96
,
113510
(
2010
).
21.
J. M. D.
Coey
,
M.
Viret
, and
S.
von Molnar
,
Adv. Phys.
48
,
167
(
1999
).
22.
E.
Dagotto
,
T.
Hotta
, and
A.
Moreo
,
Phys. Rep.
344
,
1
(
2001
).
23.
W.
Prellier
,
Ph.
Lecoeur
, and
B.
Mercey
,
J. Phys.-Condens. Mater.
13
,
R915
(
2001
).
24.
M. B.
Salamon
and
M.
Jaime
,
Rev. Mod. Phys.
73
,
583
(
2001
).
25.
Y.
Lu
,
X. W.
Li
,
G. Q.
Gong
,
G.
Xiao
,
A.
Gupta
,
P.
Lecoeur
,
J. Z.
Sun
,
Y. Y.
Wang
, and
V. P.
Dravid
,
Phys. Rev. B
54
,
R8357
(
1996
).
26.
M.-H.
Jo
,
N. D.
Mathur
,
N. K.
Todd
, and
M. G.
Blamire
,
Phys. Rev. B
61
,
R14905
(
2000
).
27.
J. Z.
Sun
,
D. W.
Abraham
,
R. A.
Rao
, and
C. B.
Eom
,
Appl. Phys. Lett.
74
,
3017
(
1999
).
28.
M.
Izumi
,
Y.
Konishi
,
T.
Nishihara
,
S.
Hayashi
,
M.
Shinohara
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
73
,
2497
(
1998
).
29.
M.
Bibes
,
Ll.
Balcells
,
S.
Valencia
,
J.
Fontcuberta
,
M.
Wojcik
,
E.
Jedryka
, and
S.
Nadolski
,
Phys. Rev. Lett.
87
,
067210
(
2001
).
30.
T. Y.
Koo
,
S. H.
Park
,
K.-B.
Lee
, and
Y. H.
Jeong
,
Appl. Phys. Lett.
71
,
977
(
1997
).
31.
A.
de Andres
,
J.
Rubio
,
G.
Castro
,
S.
Taboada
,
J. L.
Martinez
, and
J. M.
Colino
,
Appl. Phys. Lett.
83
,
713
(
2003
).
32.
J.
Rubio-Zuazo
,
A.
deAndrés
,
S.
Taboada
,
C.
Prieto
,
J. L.
Martínez
,
G. R.
Castro
.
Physica B
357
,
159
(
2005
).
33.
J. Z.
Sun
,
Philos. Trans. R. Soc. London
356
,
1693
(
1998
).
34.
H. W.
Zandbergen
,
S.
Freisem
,
T.
Nojima
, and
J.
Aarts
,
Phys. Rev. B
60
,
10259
(
1999
).
35.
Y.
Soh
,
P. G.
Evans
,
Z.
Cai
,
B.
Lai
,
C.-Y.
Kim
,
G.
Aeppli
,
N. D.
Mathur
,
M. G.
Blamire
, and
E. D.
Isaacs
,
J. Appl. Phys.
91
,
7742
(
2002
).
36.
J.
Stangl
,
V.
Holý
, and
G.
Bauer
,
Rev. Mod. Phys.
76
,
725
(
2004
).
You do not currently have access to this content.