Studies of chemically induced hot electron flow over Schottky barriers in catalytic planar nanostructures provide a direct insight into underlying charge transfer processes involved in chemical energy dissipation at solid surfaces. A systematic approach is described here to separate the hot electron and thermal current contributions to the total generated current based on in-situ resistive heating of cathode nanolayer of the Schottky structure. The method is applicable at high pressures in the gas phase. Analysis of the current induced by H2 oxidation to H2O on Pt/n-GaP nanostructure is performed for surface temperatures in the range of 453–513 K, and 120 Torr oxyhydrogen environment with 15 Torr H2. All the current components grow monotonously with temperature, while relative fraction of the hot electron current decreases with temperature from 85 to 52%.
Skip Nav Destination
Article navigation
March 2013
Research Article|
February 04 2013
Separation of hot electron current component induced by hydrogen oxidation on resistively heated Pt/n-GaP Schottky nanostructures
Mohammad A. Hashemian;
Mohammad A. Hashemian
Department of Civil and Materials Engineering, University of Illinois
, Chicago, Illinois 60607
Search for other works by this author on:
Suhas K. Dasari;
Suhas K. Dasari
Department of Civil and Materials Engineering, University of Illinois
, Chicago, Illinois 60607
Search for other works by this author on:
Eduard G. Karpov
Eduard G. Karpov
a)
Department of Civil and Materials Engineering, University of Illinois
, Chicago, Illinois 60607
Search for other works by this author on:
a)
Author to whom correspondence should be addressed; electronic mail: ekarpov@uic.edu
J. Vac. Sci. Technol. A 31, 020603 (2013)
Article history
Received:
November 13 2012
Accepted:
January 18 2013
Citation
Mohammad A. Hashemian, Suhas K. Dasari, Eduard G. Karpov; Separation of hot electron current component induced by hydrogen oxidation on resistively heated Pt/n-GaP Schottky nanostructures. J. Vac. Sci. Technol. A 1 March 2013; 31 (2): 020603. https://doi.org/10.1116/1.4790122
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00