The authors study the use of thin (230nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700°C). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found that after annealing at temperatures 900°C the emissivity in the near infrared (13μm) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000°C, which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta2O5 layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.

1.
D. C.
Walther
and
J.
Ahn
,
Prog. Energy Combust. Sci.
37
,
583
(
2011
).
2.
S. R.
Hunter
,
N. V.
Lavrik
,
S.
Mostafa
,
S.
Rajic
, and
P. G.
Datskos
,
Proc. SPIE
8377
,
83770D
(
2012
).
3.
L. R.
Arana
,
S. B.
Schaevitz
,
A. J.
Franz
,
M. A.
Schmidt
, and
K. F.
Jensen
,
J. Microelectromech. Syst.
12
,
600
(
2003
).
4.
P. J.
Timans
,
J. Appl. Phys.
74
,
6353
(
1993
).
5.
L. R.
Arana
, “
High-temperature microfluidic systems for thermally-efficient fuel processing
,” Ph.D. dissertation (
Massachusetts Institute of Technology
,
2003
).
6.
M.
Zier
,
S.
Oswald
,
R.
Reiche
, and
K.
Wetzig
,
Anal. Bioanal. Chem.
375
,
902
(
2003
).
8.
A. Z.
Moshfegh
and
O.
Akhavan
,
Mater. Sci. Semicond. Process.
6
,
165
(
2003
).
9.
D. W.
Lynch
and
W. R.
Hunter
, in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Elsevier
,
New York
,
1998
), p.
408
.
10.
A.
Borghesi
,
L.
Nosenzo
,
A.
Piaggi
,
G.
Guizzeti
,
C.
Nobili
, and
G.
Ottaviani
,
Phys. Rev. B
38
,
10937
(
1988
).
11.
M.
Tanaka
,
S.
Kurita
,
M.
Fujisawa
, and
F.
Levy
,
Phys. Rev. B
46
,
10442
(
1992
).
12.
G.
Guizetti
and
F.
Marabelli
, in
Properties of Metal Silicides
, edited by
K.
Maex
and
M.
Van Rossum
(
Institution of Engineering and Technology
,
1995
), p.
240
.
13.
A. W.
Sood
 et al,
J. Nanosci. Nanotechnol.
12
,
3950
(
2012
).
14.
D. E.
Aspnes
,
Am. J. Phys.
50
,
704
(
1982
).
15.
O.
Wiener
,
Abh. Math.-Phys. Kl. Säechs. Akad. Wiss. Leipzig
32
,
509
(
1912
).
16.
C.
Milanese
,
V.
Buscaglia
,
F.
Maglia
, and
U.
Anselmi-Tambutini
,
J. Phys. Chem. B
106
,
5859
(
2002
).
17.
K.
Stella
,
D.
Bürstel
,
E.
Hasselbrink
, and
D.
Diesing
,
Phys. Status Solidi
5
,
68
(
2011
).
18.
R.
Hübner
,
M.
Hecker
,
N.
Mattern
,
V.
Hoffmann
,
K.
Wetzig
,
H.-J.
Engelmann
, and
E.
Zschech
,
Anal. Bioanal. Chem.
379
,
568
(
2004
).
19.
P.
Gallais
,
J. J.
Hantzpergue
,
J. C.
Remy
, and
D.
Roptin
,
Thin Solid Films
165
,
227
(
1988
).
You do not currently have access to this content.