Ionization vacuum gauges are used as secondary standards by calibration laboratories and as transfer standards in intercomparisons among metrology laboratories. A quantitative measurement of gauge stability with respect to the gauge calibration factor is critical for these applications. We report the long-term calibration stability of hot-filament metal-envelope enclosed ionization gauges based upon the analysis of repeat calibrations of nine gauges over a 15 year period. All of the gauges included in the study were of the same type: Bayard–Alpert type ionization gauges of an all-metal construction with an integral metal-envelope surrounding the hot-filament, grid, and collector. All were calibrated repeatedly at the National Institute of Standards and Technology (NIST) using the NIST high-vacuum standard but are owned by organizations external to NIST. The gauges were removed from the high-vacuum standard after calibration, shipped back to the gauge-owner, and were returned to NIST at a later date (more than 1 year) for recalibration. Gauge stability was determined using a pooled standard deviation (weighted root-mean-square average of individual gauge standard deviations) based on all calibration factors measured at NIST and was used to define the relative uncertainty component associated with long-term stability uLTS. We determined uLTS = 1.9% (k = 1) for gauges operated with 4 mA of emission current, and uLTS = 2.8% (k = 1) for gauges operated with 0.1 mA emission current.

1.
C. E.
Tilford
,
S.
Dittmann
, and
K. E.
McCulloh
,
J. Vac. Sci. Technol. A
6
,
2853
(
1988
).
2.
S.
Dittmann
, “High vacuum standard and its use,” NIST Special Publication 250-34, U.S. Department of Commerce, National Institute of Standards and Technology (1989).
3.
R. T.
Bayard
and
D.
Alpert
,
Rev. Sci. Instrum.
21
,
571
(
1950
).
4.
P. A.
Redhead
,
J. Vac. Sci. Technol.
3
,
173
(
1966
).
5.
H.
Akimichi
,
T.
Tanaka
,
K.
Takeuchi
,
Y.
Tuzi
, and
I.
Arakawa
,
Vacuum
46
,
749
(
1995
).
6.
H.
Akimichi
,
N.
Takahashi
,
T.
Tanaka
,
K.
Takeuchi
,
Y.
Tuzi
, and
I.
Arakawa
,
Vacuum
47
,
561
(
1996
).
7.
A. R.
Filippelli
and
P. J.
Abbott
,
J. Vac. Sci. Technol. A
13
,
2582
(
1995
).
8.
P. C.
Arnold
,
D. G.
Bills
,
M. D.
Borenstein
, and
S. C.
Borichevsky
,
J. Vac. Sci. Technol. A
12
,
580
(
1994
).
9.
H.
Yoshida
,
K.
Arai
,
H.
Akimichi
, and
M.
Hirata
,
Vacuum
84
,
705
(
2009
).
10.
D.
Li
and
K.
Jousten
,
J. Vac. Sci. Technol. A
21
,
937
(
2003
).
11.
P. C.
Arnold
and
S. C.
Borichevsky
,
J. Vac. Sci. Technol. A
12
,
568
(
1994
).
12.
D. A.
Olson
,
P. J.
Abbott
,
K.
Jousten
,
F. J.
Redgrave
,
P.
Mohan
, and
S. S.
Hong
,
Metrologia Tech. Suppl.
47
,
07004
(
2010
).
13.
P. A.
Redhead
,
J. Vac. Sci. Technol.
6
,
848
(
1969
).
14.
15.
D. G.
Bills
,
J. Vac. Sci. Technol. A
12
,
574
(
1994
).
16.
G.
Comsa
,
J. Appl. Phys.
37
,
554
(
1966
).
17.
C.
Benvenuti
and
M.
Hauer
,
Nucl. Instrum. Method
140
,
453
(
1977
).
18.
B. N.
Taylor
and
C. E.
Kuyatt
, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST (U.S.) Technical Note 1297 (1994).
19.
A. R.
Filippelli
and
S.
Dittmann
,
J. Vac. Sci. Technol. A
9
,
2757
(
1991
).
20.
K. E.
McCulloh
,
C. R.
Tilford
,
C. D.
Ehrlich
, and
F. G.
Long
,
J. Vac. Sci. Technol. A
5
,
376
(
1987
).
21.
Handbook of Vacuum Technology
, edited by
K.
Jousten
(
Wiley-VCH Verlag
,
Weinheim
,
2008
), pp.
599
602
.
22.
P. J.
Abbott
,
J. P.
Looney
, and
P.
Mohan
,
Vacuum
77
,
217
(
2005
).
23.
T. A.
Bancroft
and
C. P.
Han
,
Encyclopedia of Statistical Sciences
, 2nd ed., edited by
S.
Kotz
,
N.
Balakrishnan
,
C. B.
Read
,
B.
Vidakovic
, and
N. L.
Johnson
, (
John Wiley & Sons
,
NJ
,
2006
), Vol.
9
, pp.
6269
6374
.
24.
H.
Abdi
,
Encyclopedia of Measurement and Statistics
, edited by
Neil
Salkind
(
Sage
,
Thousand Oaks, CA
,
2007
).
You do not currently have access to this content.