The complex interaction between several variables in magnetron sputtering discharges is a challenge in developing engineering design tools for industrial applications. For instance, at high pressures, rarefaction and gas heating should no longer be neglected for determining several parameters of the process. In this article, we use a comprehensive 3D reactor-scale simulator that incorporates most phenomena of interest in a self-consistent manner to simulate the transport of sputtered particles over a wide range of pressures and powers. Calculations of aluminum deposition rates and metal vapor densities are in reasonable agreement with experiments over a wide range of pressures and powers. Of the elements investigated (Al, Ti, and Cu), copper showed the greatest rarefaction (30%) due to its higher sputtering yield. Titanium, despite a slightly lower sputtering yield than Al, shows a greater rarefaction than aluminum as more particles are reflected from the target as high energy neutrals. In this case, a more efficient energy transfer process is responsible for the higher rarefaction observed in Ti sputtering when compared to Al. The authors also observed that by sputtering at a higher pressure, the probability of electron impact ionization of sputtered particles is increased and speculate about the role of this process in contrast to penning ionization, which is believed to be the dominant ionization mechanism in magnetron sputtering.

1.
W. D.
Westwood
,
Sputter Deposition
(
American Vacuum Society
,
New York
,
2003
).
2.
V.
Kouznetsov
,
K.
Macak
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
Surf. Coat. Technol.
122
,
290
(
1999
).
3.
W.-D.
Münz
,
M.
Schenkel
,
S.
Kunkel
,
J.
Paulitsch
, and
K.
Bewilogua
,
J. Phys. Conf. Ser.
100
,
2001
(
2008
).
4.
S. D.
Ekpe
and
S. K.
Dew
,
J. Vac. Sci. Technol. A
21
,
476
(
2003
).
5.
Q.
Qiu
,
Q.
Li
,
J.
Su
,
Y.
Jiao
, and
J.
Finely
,
Vacuum
82
,
657
(
2008
).
6.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
6
,
19
(
1988
).
7.
D. W.
Hoffman
,
J. Vac. Sci. Technol. A
3
,
561
(
1985
).
8.
G. M.
Turner
,
J. Vac. Sci. Technol. A
13
,
2161
(
1995
).
9.
F. J.
Jimenez
,
S. D.
Ekpe
, and
S. K.
Dew
,
J. Vac. Sci. Technol. A
24
,
1630
(
2006
).
10.
S. K.
Dew
, “Processes and simulation for advanced integrated circuit metallization,” Ph.D. thesis (
University of Alberta
,
1992
).
11.
A.
Gras-Marti
and
J. A.
Valles-Abarca
,
J. Appl. Phys.
54
,
1071
(
1983
).
12.
V.
Kristya
,
J. Surf. Invest.
2
,
203
(
2008
).
13.
A.
Palmero
,
H.
Rudolph
, and
F. H. P. M.
Habraken
,
Appl. Phys. Lett.
89
,
211501
(
2006
).
14.
T.
Motohiro
,
J. Vac. Sci. Technol. A
4
,
189
(
1986
).
15.
A.
Bogaerts
and
R.
Gijbels
,
J. Appl. Phys.
79
,
1279
(
1996
).
16.
S.
Mahieu
,
G.
Buyle
,
D.
Depla
,
S.
Heirwegh
,
P.
Ghekiere
, and
R.
De Gryse
,
Nucl. Instrum. Methods Phys. Res. B
243
,
313
(
2006
).
17.
R.
Sobbia
,
P. K.
Browning
, and
J. W.
Bradley
,
J. Vac. Sci. Technol. A
26
,
103
(
2008
).
18.
V. V.
Serikov
,
S.
Kawamoto
, and
K.
Nanbu
,
IEEE Trans. Plasma Sci.
27
,
1389
(
1999
).
19.
I.
Kolev
and
A.
Bogaerts
,
IEEE Trans. Plasma Sci.
34
,
886
(
2006
).
20.
T.
Nakano
and
S.
Baba
,
Thin Solid Films
343–344
,
24
(
1999
).
21.
F. J.
Jimenez
, “Modeling transport of thermalized neutrals in a sputter deposition system,” Master’s thesis (
University of Alberta
,
2005
).
22.
A.
Bogaerts
,
R.
Gijbels
, and
V. V.
Serikov
,
J. Appl. Phys.
87
,
8334
(
2000
).
23.
V.
Vyas
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
24
,
1955
(
2006
).
24.
K.
Wasa
and
S.
Hayakawa
,
Handbook of Sputter Deposition System
(
Noyes, Park Ridge
,
NJ
,
1992
).
25.
S.
Leonard
, “A framework for reactor-scale PVD simulations,” Master’s thesis (
University of Alberta
,
2002
).
26.
S.
Senthil-Nathan
,
G.
Mohan Rao
, and
S.
Mohan
,
J. Appl. Phys.
84
,
564
(
1998
).
27.
T. W.
Tuer
and
G. S.
Springer
,
Comput. Fluids
1
,
399
(
1973
).
28.
A. M.
Myers
,
J. R.
Doyle
, and
D. N.
Ruzic
,
J. Appl. Phys.
72
,
3064
(
1992
).
29.
B.
Chapman
,
Glow Discharge Processes
(
Wiley
,
New York
,
1980
).
30.
J. F.
Ziegler
,
J. P.
Birsack
, and
J.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1985
).
31.
R. S.
Robinson
,
J. Vac. Sci. Technol.
16
,
185
(
1979
).
32.
R. E.
Somekh
,
J. Vac. Sci. Technol. A
2
,
1285
(
1984
).
33.
A.
Bogaerts
,
M.
van Straaten
,
R.
Gijbels
, and
M.
van der Straaten
,
Spectrochim. Acta
5
,
179
(
1995
).
34.
K. V.
Aeken
,
S.
Mahieu
, and
D.
Depla
,
J. Phys. D
41
,
205307
(
2008
).
35.
Y.
Yamamura
and
H.
Tawara
,
At. Data Nucl. Data Tables
62
,
149
(
1996
).
36.
A. M.
Myers
,
J. R.
Doyle
,
J. R.
Abelson
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. A
9
,
614
(
1991
).
37.
K.
Macak
,
P.
Macak
, and
U.
Helmersson
,
Comput. Phys. Commun.
120
,
238
(
1999
).
38.
K. T.
Kuwata
,
R. I.
Erickson
, and
J. R.
Doyle
,
Nucl. Instrum. Methods Phys. Res. B
201
,
566
(
2003
).
39.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
McGraw–Hill
,
New York
,
1980
).
40.
Y.
Yamamura
and
M.
Ishida
,
J. Vac. Sci. Technol. A
13
,
101
(
1995
).
41.
M.
Hestenes
and
E.
Stiefel
,
J. Res. Nat. Bur. Stand.
49
,
409
(
1952
).
42.
Y.
Saad
and
M. H.
Schultz
,
SIAM J. Sci. Stat. Comput.
7
,
856
(
1986
).
43.
J.
Dongarra
,
A.
Lumsdaine
,
X.
Niu
,
R.
Pozo
, and
K. A.
Remington
,
in Proceedings of the Second Object Oriented Numerics Conference
,
1994
(unpublished).
44.
T. P.
Drusedau
,
J. Vac. Sci. Technol. A
20
,
459
(
2002
).
45.
A.
Palmero
,
H.
Rudolph
, and
F. H. P. M.
Habraken
,
Appl. Phys. Lett.
87
,
1
(
2005
).
46.
V. V.
Serikov
and
K.
Nanbu
,
J. Appl. Phys.
82
,
5948
(
1997
).
47.
E. H.
Kennard
,
Kinetic Theory of Gases
(
McGraw Hill
,
New York
,
1934
).
48.
W. D.
Westwood
,
J. Vac. Sci. Technol.
15
,
1
(
1978
).
49.
M.
Stepanova
and
S. K.
Dew
,
J. Appl. Phys.
92
,
1699
(
2002
).
50.
M. W.
Thompson
,
Philos. Mag.
18
,
377
(
1968
).
51.
SRIM-2011 (
2011
), http://www.srim.org.
52.
W.
Eckstein
, in
Sputtering by Particle Bombardment
(
Springer
,
Berlin Heidelberg
,
2007
), pp.
33
187
.
53.
C.
Vitelaru
,
L.
de Poucques
,
T. M.
Minea
, and
G.
Popa
,
Plasma Sources Sci. Technol.
20
,
045020
(
2011
).
54.
W. D.
Davis
and
T. A.
Vanderslice
,
Phys. Rev.
131
,
219
(
1963
).
55.
J.
Rickards
,
Vacuum
34
,
559
(
1984
).
56.
S.
Hamaguchi
,
R. T.
Farouki
, and
M.
Dalvie
,
Phys. Rev. A
44
,
3804
(
1991
).
57.
C. V.
Budtz-Jorgensen
,
J.
Bottiger
, and
P.
Kringhoj
,
Vacuum
56
,
9
(
2000
).
58.
M. J.
Goeckner
,
J. A.
Goree
, and
T. E.
Sheridan
,
IEEE Trans. Plasma Sci.
19
,
301
(
1991
).
59.
C. H.
Shon
,
J. K.
Lee
,
H. J.
Lee
,
Y. K.
Shin
,
Y.
Yang
, and
T. H.
Chung
,
IEEE Trans. Plasma Sci.
26
,
1635
(
1998
).
60.
G. M.
Turner
,
I. S.
Falconer
,
B. W.
James
,
D. R.
Mckenzie
, and
R. W.
James
,
J. Appl. Phys.
65
,
3671
(
1989
).
61.
R. A.
Baragiola
,
E. V.
Alonso
,
J.
Ferron
, and
A.
Oliva-Florio
,
Surf. Sci.
90
,
240
(
1979
).
62.
D.
Depla
,
S.
Mahieu
, and
R.
De Gryse
,
Thin Solid Films
517
,
2825
(
2009
).
63.
M.
Stepanova
and
S. K.
Dew
,
J. Vac. Sci. Technol. A
19
,
2805
(
2001
).
64.
V.
Efimova
,
A.
Derzsi
,
A.
Zlotorowicz
,
V.
Hoffmann
,
Z.
Donkó
, and
J.
Eckert
,
Spectrochim. Acta, Part B
65
,
311
(
2010
).
65.
N.
Britun
,
M.
Gaillard
,
Y.
Kim
,
K.
Kim
, and
J.-G.
Han
,
Met. Mater. Int.
13
,
483
(
2007
).
66.
N.
Britun
,
M.
Gaillard
,
S.-G.
Oh
, and
J. G.
Han
,
J. Phys. D
40
,
5098
(
2007
).
67.
M.
Wolter
,
H. T.
Do
,
H.
Steffen
, and
R.
Hippler
,
J. Phys. D
38
,
2390
(
2005
).
68.
R.
Ramos
,
G.
Cunge
,
M.
Touzeau
, and
N.
Sadeghi
,
J. Phys. D
41
,
152003
(
2008
).
69.
A. P.
Yalin
and
V.
Surla
,
in the 29th International Electric Propulsion Conference
,
2005
(unpublished), pp.
1
13
.
70.
M.
Gaillard
,
N.
Britun
,
Y. M.
Kim
, and
J. G.
Han
,
J. Phys. D
40
,
809
(
2007
).
71.
S.
Kadlec
,
Plasma Process. Polym.
4
,
S419
(
2007
).
72.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley–Interscience
,
New York
,
1994
).
73.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
74.
A.
Bogaerts
and
R.
Gijbels
,
J. Appl. Phys.
84
,
121
(
1998
).
75.
M.
Dickson
,
F.
Qian
, and
J.
Hopwood
,
J. Vac. Sci. Technol. A
15
,
340
(
1997
).
76.
D. J.
Field
, Ph.D. thesis (
University of Alberta
,
2005
).
77.
J.
Bohlmark
,
J.
Alami
,
C.
Christou
,
A. P.
Ehiasarian
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
23
,
18
(
2005
).
78.
C.
Christou
and
Z. H.
Barber
,
J. Vac. Sci. Technol. A
18
,
2897
(
2000
).
79.
J.
Hopwood
,
Phys. Plasmas
5
,
1624
(
1998
).
You do not currently have access to this content.