Not only are amorphous oxide semiconductor thin film transistors (TFTs) extremely sensitive to the processing of the active layer, but subsequent layer processing can also impact the performance. Due to this sensitivity, many surface treatments and passivation techniques for the active layer have been developed, but the influence of the etching of the active layer itself has not been explored extensively. These etch steps are especially critical in the manufacture of flexible microelectronics, for which process conditions are inherently limited by thermal stability of the plastic (<200 °C) and incompatibility of the plastic substrate with highly oxidizing chemical environments. Here, a novel dry etch process is compared to typical wet etch process in the context of flexible zinc indium oxide TFT array fabrication on plastic. The dry etch process provides superior control of the sidewall profile and the etch selectivity. These improvements using a dry etch approach decrease the off current of the TFT by 3 orders of magnitude from 2.65 nA for the wet etch process to 0.71 pA using the dry etch with a concurrent improvement in the device yield to 100% (for 120 transistors) with the dry etch. Additionally, the subthreshold slope improves from 1.9 to 1.0 V/decade, while the saturation mobility (6.5 cm2/V s) is not impacted by the etch process.

1.
Yue
Kuo
,
Thin Film Transistors Materials and Processes
, Amorphous Silicon Thin Film Transistors (
Kluwer Academic
,
Boston
,
2004
), Vol.
1
.
2.
H.
Hosono
,
M.
Yasukawa
, and
H.
Kawazoe
,
J. Non-Cryst. Solids
203
,
334
(
1996
).
3.
N.
Itagaki
,
T.
Iwasaki
,
H.
Kumomi
,
T.
Den
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Phys. Status Solidi
205
,
1915
(
2008
).
4.
H. Q.
Chiang
,
J. F.
Wager
,
R. L.
Hoffman
,
J.
Jeong
, and
D. A.
Keszler
,
Appl. Phys. Lett.
86
,
013503
(
2005
).
5.
H.
Hosono
,
J. Non-Cryst. Solids
352
,
851
(
2006
).
6.
J.
Nishii
,
F. M.
Hossain
,
S.
Takagi
, and
T.
Aita
,
Jpn. J. Appl. Phys., Part 2
42
,
L347
(
2003
).
7.
J. K.
Jeong
,
H. W.
Yang
,
J. H.
Jeong
,
Y. G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
93
,
123508
(
2008
).
8.
E.
Chong
,
K. C.
Jo
, and
S. Y.
Lee
,
Appl. Phys. Lett.
96
,
152102
(
2010
).
9.
J. S.
Park
,
J. K.
Jeong
,
Y. G.
Mo
,
H. D.
Kim
, and
S. I.
Kim
,
Appl. Phys. Lett.
90
,
262106
(
2007
).
10.
N.
Ito
,
Y.
Sato
,
P. K.
Song
,
A.
Kaijio
, and
K.
Inoue
,
Thin Solid Films
496
,
99
(
2006
).
11.
Y. S.
Jung
,
J. Y.
Seo
,
D. W.
Lee
, and
D. Y.
Jeon
,
Thin Solid Films
445
,
63
(
2003
).
12.
J.
Triska
,
J. F.
Conley
, Jr.
,
R.
Presley
, and
J. F.
Wager
,
J. Vac. Sci. Technol. B
28
,
C5I1
(
2010
).
13.
P.
Barquinha
,
A.
Vila
,
G.
Goncalves
,
L.
Pereira
,
R.
Martins
,
J.
Morante
, and
E.
Fortunato
,
IEEE Trans. Electron Devices
55
,
954
(
2008
).
14.
H. Q.
Chiang
,
B. R.
McFarlane
,
D.
Hong
,
R. E.
Presley
, and
J. F.
Wager
,
J. Non-Cryst. Solids
354
,
1365
(
2008
).
15.
J. Y.
Kwon
 et al,
IEEE Electron Device Lett.
29
,
1309
(
2008
).
16.
J.
Park
 et al,
Appl. Phys. Lett.
93
,
053505
(
2008
).
17.
R. J.
Saia
,
R. F.
Kwanswick
, and
C. Y.
Wei
,
J. Electrochem. Soc.
138
,
493
(
1991
).
18.
G.
Bradshaw
and
A. J.
Hughes
,
Thin Solid Films
33
,
L5
(
1976
).
19.
K.
Kaftanoglu
,
S. M.
Venugopal
,
M.
Marrs
,
A.
Dey
,
E. J.
Bawolek
,
D. R.
Allee
, and
D.
Loy
,
J. Disp. Technol.
7
,
339
(
2011
).
20.
W. S.
Cheong
,
M. K.
Ryu
,
J. H.
Shin
,
S. H.
Ko Park
, and
C. S.
Hwang
,
Thin Solid Films
516
,
1516
(
2008
).
21.
K.
Jeon
 et al,
Appl. Phys. Lett.
93
,
182102
(
2008
).
22.
S. K.
Park
,
Y.-H.
Kim
,
H.-S.
Kim
, and
J.-I.
Han
,
Electrochem. Solid-State Lett.
12
,
H256
(
2009
).
23.
K. H.
Kim
,
Y.-H.
Kim
,
H.J.
Kim
,
J.-I.
Han
, and
S.K.
Park
,
IEEE Electron Device Lett.
32
,
524
(
2011
).
24.
B.
Bahadur
,
Liquid Crystals: Applications and Uses
, 3rd ed. (
World Scientific
,
Singapore
,
1990
).
25.
T.
Nakano
,
I.
Mori
, and
S.
Baba
,
Appl. Surf. Sci.
113
,
642
(
1997
).
You do not currently have access to this content.