The rapid pumpdown of ultrahigh vacuum (UHV) systems, achieved with a very short and low temperature baking or even without baking, is appealing in a variety of research and industrial applications. The use of small volume, compact pumps delivering very high pumping speed is also attractive since it allows minimizing the overall size and weight of the vacuum system, simplifying its design. In the present article, the authors report the results of the pumping experiments carried out on a vacuum chamber pumped by a compact nonevaporable getter (NEG) pump (Capacitorr D 400-2® model, SAES Getters SpA, Italy) and by a small sputter ion pump (SIP). To measure the effective contribution of the NEG to the overall pumping, vacuum tests were carried out in a wide range of situations, with/without NEG pump, with/without baking, and changing the pumping speed of the SIP from 60 to 10 l/s (N2). Significantly lower pressures and faster pumping could be achieved using the NEG pump. Base pressures of low 1011mbar could be obtained in the authors’ experimental system with the compact NEG assisted by the 10 l/s SIPs after a 48 h bake-out. The results also show that the system with NEG reached 1011mbar after a very short (few hours) bake-out. The base pressure was 1×1010mbar with 60 l/s SIP alone after a 48 h bake-out, whereas it was 7.9×1011mbar when combined with the NEG, a better result after only 2 h bake-out. This is quite a remarkable decrease in the bake-out time of a UHV system. It is worthwhile to note that UHV could also be achieved with the NEG even in a fully unbaked system. The pressure of 8×109mbar reached with the SIP alone dropped to 3.9×1010mbar after adding the NEG. The other interesting result of the NEG-based system is that the pressure increase is much slower when the SIP is switched off. This is also a good characteristic, required for portable vacuum devices, such as UHV suitcases and more generally for systems hosting sensitive materials or components, which can be affected by the pressure increase following a power interruption.

1.
M.
Audi
and
M.
de Simon
,
Vacuum
37
,
629
(
1987
).
2.
Y.
Suetsugu
and
M.
Nakagawa
,
Vacuum
42
,
625
(
1991
).
3.
H.
Hartwig
and
J. S.
Kouptsidis
,
J. Vac. Sci. Technol.
1
,
1155
(
1974
).
5.
J. H.
Singleton
,
J. Vac. Sci. Technol.
8
,
275
(
1971
).
6.
K. M.
Welch
,
D. J.
Pate
, and
R. J.
Todd
,
J. Vac. Sci. Technol. A
12
,
861
(
1994
).
7.
P.
Manini
,
M.
Marino
,
F.
Belloni
, and
M.
Porro
,
Proc. IEEE
5
,
3839
(
1993
).
8.
B.
Ferrario
,
Proceedings of the International Symposium on Vacuum Technology and Nuclear Application
, Bombay, India,
1983
(unpublished), pp.
175
188
.
9.
P.
della Porta
,
B.
Ferrario
, and
M.
Borghi
,
J. Vac. Sci. Technol.
7
,
300
(
1970
).
10.
M.
Audi
,
L.
Dolcino
,
F.
Doni
, and
B.
Ferrario
,
J. Vac. Sci. Technol. A
5
,
2587
(
1987
).
11.
R. M.
Caloi
 et al.,
Proceedings of the 14th Conference of the Italian Vacuum Association
, Vicenza, Italy,
1998
(unpublished), pp.
61
69
.
12.
D.
Jiang
,
Y.
Chen
,
C.
Chen
,
Y.
Liu
,
Y.
Lu
,
W.
Li
, and
H.
Zhang
,
Proceedings of EPAC ’08
, Genova, Italy,
2008
, pp.
3702
3704
.
13.
F.
Mazza
, Non Evaporable Getters for UHV Applications, SAES Technical Note, www.saesgetters.com (
2002
).
14.
Data from commercial literature.
15.
SAES literature, www.saesgetters.com
16.
PLS-II Technical Design Report (Blue book), January
2010
, pp.
3
61
3
83
.
17.
S.
Katagiri
and
T.
Ohshima
,
Microelectron. Eng.
83
,
1058
(
2006
).
18.
G.
Firpo
and
A.
Pozzo
,
Rev. Sci. Instrum.
75
,
4828
(
2004
).
19.
C. L.
Hackman
,
E. E.
Hackman
, III
, and
M. E.
Hackman
,
Hazardous Waste Operations and Emergency Response Manual and Desk Reference
(
McGraw-Hill
,
New York
,
2004
).
20.
T.
Huang
,
Solid State Technol.
,
30
(Oct.
2008
).
21.
J. Y.
Lim
,
AVS 56th International Symposium and Exhibition
, San Josè, CA,
2009
(unpublished).
22.
B.
Ferrario
,
Foundation of Vacuum Science and Technology
, edited by
J. M.
Lafferty
(
Wiley
,
New York
,
1998
), pp.
308
309
.
24.
J.
Kovac
,
O.
Sakho
,
P.
Manini
, and
M.
Sancrotti
,
J. Vac. Sci. Technol. A
18
,
2950
(
2000
).
25.
F.
Sciuccati
,
B.
Ferrario
,
G.
Gasparini
, and
L.
Rosai
,
Vacuum
38
,
765
(
1988
).
26.
S.
Tominetti
and
M.
Amiotti
,
Proc. IEEE
90
,
540
(
2002
).
27.
S. J.
Kwon
and
K.
Jo
,
J. Vac. Sci. Technol. B
18
,
1227
(
2000
).
28.
J.
Jarvis
,
A.
Tran
,
A.
Mollet
,
R.
Heyder
, and
F.
Mazza
,
Semicond. Int.
20
,
305
(
1997
).
29.
F.
Mazza
 et al.,
Proceedings of the Fourth ISSP
, Japan,
1997
(unpublished), pp.
305
309
.
30.
P.
Manini
,
18th International Spin Physics Symposium
, Charlottesville, VA,
2008
(unpublished), pp.
1138
1142
.
31.
X.
Luo
,
L.
Bornschein
,
Ch.
Day
, and
J.
Wolf
,
Vacuum
81
,
777
(
2007
).
32.
H. F.
Dylla
,
D. M.
Manos
,
J. C.
Citrolo
,
P. H.
LaMarche
,
S.
Raftopoulos
,
M.
Ulrickson
,
A. G.
Mathewson
,
A.
Poncet
, and
F.
Mazza
,
Proceedings of American Vacuum Society Topical Conference on Vacuum Design of Synchrotron Light Sources
, Argonne, 13–15 November
1990
, pp.
389
403
.
33.
C.
Benvenuti
,
Nucl. Instrum. Methods
205
,
391
(
1983
).
34.
C.
Benvenuti
and
P.
Chiggiato
,
J. Vac. Sci. Technol. A
14
,
3278
(
1996
).
35.
C.
Benvenuti
and
P.
Chiggiato
,
Vacuum
44
,
511
(
1993
).
36.
C.
Benvenuti
,
J. P.
Bojon
,
P.
Chiggiato
, and
G.
Losch
,
Vacuum
44
,
507
(
1993
).
You do not currently have access to this content.