Currently, commercially available turbo-drag pumps for high vacuum systems are based on either Gaede- or Holweck-type molecular drag pumping stages used in series downstream of axial bladed stages to extend the maximum compression ratio up to the 10 mbar foreline pressure range. Modern Gaede-type molecular drag stages use a disk-shaped impeller, allowing a very compact design, and the maximum compression ratio is limited by the leakage effect to about 10 per stage. Holweck stages are able to supply a high pumping speed, thanks to the presence of many channels in parallel and a high compression ratio, but this is obtained with the use of a less compact drum-shaped impeller. In this article, a new spiral molecular drag stage design is presented with the advantages of both high compression ratio and pumping speed per stage and very compact design: a stage occupying the very small axial space of one Gaede can supply the same compression ratio and pumping speed of a Holweck stage of the same diameter and peripheral speed in a much smaller axial space. The new spiral drag stage allows the design of very compact, high compression ratio turbo-drag pumps. The comparison of a 700 l/s turbo-drag pump implementing the new spiral molecular drag pump design with the existing Gaede- and Holweck-based products of the same pumping speed is presented, showing the performance advantages of the new design.

1.
G.
Levi
,
J. Vac. Sci. Technol. A
10
,
2619
(
1992
).
2.
W.
Gaede
,
Phys. Z.
13
,
864
(
1912
).
3.
J. C.
Helmer
and
G.
Levi
,
J. Vac. Sci. Technol. A
13
,
2592
(
1995
).
4.
R.
Cerruti
and
S.
Giors
, US Patent No. 6,877,949 B2 (April 12,
2005
).
5.
F.
Holweck
,
L’Onde Electrique Acad.
21
,
497
(
1923
).
6.
F.
Holweck
,
Acad. Sci., Paris
117
,
43
(
1923
).
7.
M.
Siegbahn
,
Ark. Mat. Astron. Phys.
30B
,
261
(
1943
).
8.
J.
Chu
,
Vac. Sci. Technol. A
6
,
1202
(
1988
).
9.
M.
Spagnol
,
R.
Cerruti
, and
J. C.
Helmer
,
J. Vac. Sci. Technol. A
16
,
1151
(
1998
).
10.
R.
Cerruti
,
M.
Spagnol
, and
J. C.
Helmer
,
J. Vac. Sci. Technol. A
17
,
3096
(
1999
).
11.
S.
Giors
and
F.
Subba
,
J. Vac. Sci. Technol. A
22
,
1828
(
2004
).
12.
S.
Giors
,
F.
Subba
, and
R.
Zanino
,
J. Vac. Sci. Technol. A
23
,
336
(
2005
).
13.
H. -P.
Cheng
,
R. -Y.
Jou
,
F. -Z.
Chen
,
Y. -W.
Chang
,
Matsumi
Iwane
, and
Takashi
Hanaoka
,
J. Vac. Sci. Technol. A
18
,
543
(
2000
).
14.
Y. -Y.
Tsui
,
C. -P.
Kung
, and
H. -P.
Cheng
,
J. Vac. Sci. Technol. A
19
,
2785
(
2001
).
15.
H. -P.
Cheng
and
M. -T.
Chiang
,
J. Vac. Sci. Technol. A
21
,
1458
(
2003
).
16.
F.
Sharipov
,
P.
Fahrenbach
, and
A.
Zippa
,
J. Vac. Sci. Technol. A
23
,
1331
(
2005
).
17.
S.
Giors
,
E.
Colombo
,
F.
Inzoli
,
F.
Subba
, and
R.
Zanino
,
J. Vac. Sci. Technol. A
24
,
1584
(
2006
).
18.
L.
Shi
,
X.
Wang
,
Y.
Zhu
, and
S.
Pang
,
J. Vac. Sci. Technol. A
11
,
426
(
1993
).
19.
J. -S.
Heo
and
Y. -K.
Hwang
,
J. Vac. Sci. Technol. A
19
,
656
(
2001
).
20.
J. -S.
Heo
and
Y. -K.
Hwang
,
J. Vac. Sci. Technol. A
20
,
1621
(
2002
).
21.
M.
Siegbahn
, Patent No. GB 322.879 (July 31,
1929
).
22.
Handbook of Vacuum Technology
, edited by
K.
Jousten
(
Wiley-Blackwell
,
Weinheim
,
2008
), Chap. 5.
23.
J. C.
Helmer
and
S.
Giors
, Patent Applications No. 12/343961 and 12/343980, December 24, 2008.
You do not currently have access to this content.