Hydrogen-terminated silicon nanoparticles were synthesized over a broad range of conditions in a continuous flow, nonthermal rf plasma. The effects of three operating parameters—rf power, reactor pressure, and hydrogen flow rate—were examined in terms of their effects on particle crystallinity, size, and surface composition. Silicon-hydrogen composition was characterized in situ by Fourier transform infrared spectrometry, and particle structural morphology was examined with a transmission electron microscope. Amorphous or crystalline particles could be synthesized by appropriately adjusting the operating parameters. Over the majority of settings examined, the minimum power required to produce discrete crystalline particles was 2030W. Depending on the parameter settings, particles also exhibited hydrogen coverage ranging from predominantly monohydride (SiH) functional groups to more complex compositions of higher hydrides. Particles with the highest proportion of surface SiH bonds were consistently synthesized in the smallest diameter (4mm i.d.) tube reactor.

1.
C.
Lam
,
Y. F.
Zhang
,
Y. H.
Tang
,
C. S.
Lee
,
I.
Bello
, and
S. T.
Lee
,
J. Cryst. Growth
220
,
466
(
2000
);
H.
Wiggers
,
R.
Starke
, and
P.
Roth
,
Chem. Eng. Technol.
24
,
261
(
2001
);
X.
Zhang
,
D.
Neiner
,
S.
Wang
,
A. Y.
Louie
, and
S. M.
Kauzlarich
,
Nanotechnology
18
,
095601
1
(
2007
);
[PubMed]
Y.
Dong
,
A.
Bapat
,
S.
Hilchie
,
U.
Kortshagen
, and
S. A.
Campbell
,
J. Vac. Sci. Technol. B
22
,
1923
(
2004
).
2.
X. D.
Pi
,
R. W.
Liptak
,
J.
Nowak
,
N.
Wells
,
C.
Carter
,
S.
Campbell
, and
U.
Kortschagen
,
Nanotechnology
19
,
245603
(
2008
);
[PubMed]
P.
Roca i Cabarrocas
,
T.
Nguyen-Tran
,
Y.
Djeridane
,
A.
Abramov
,
E.
Johnson
, and
G.
Patriarche
,
J. Phys. D: Appl. Phys.
40
,
2258
(
2007
).
3.
L.
Mangolini
,
E.
Thimsen
, and
U.
Kortshagen
,
Nano Lett.
5
,
655
(
2005
);
[PubMed]
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
42
,
113001
(
2009
).
4.
S. L.
Girshick
and
J. J.
Hafiz
,
J. Phys. D: Appl. Phys.
40
,
2354
(
2007
).
5.
M. L.
Ostraat
,
J. W.
De Blauwe
,
M. L.
Green
,
L. D.
Bell
,
H. A.
Atwater
, and
R. C.
Flagan
,
J. Electrochem. Soc.
148
,
G265
(
2001
).
6.
T.
Hawa
and
M. R.
Zachariah
,
Phys. Rev. B
69
,
035417
(
2004
);
J.
Holm
and
J. T.
Roberts
,
J. Phys. Chem. C
113
,
15955
(
2009
).
J. M.
Buriak
,
Chem. Rev. (Washington, D.C.)
102
,
1271
(
2002
);
X.
Li
,
Y.
He
,
S. S.
Talukdar
, and
M. T.
Swihart
,
Langmuir
19
,
8490
(
2003
).
8.
D.
Jurbergs
,
E.
Rogojina
,
L.
Mangolini
, and
U.
Kortshagen
,
Appl. Phys. Lett.
88
,
233116
(
2006
).
9.
J.
Holm
and
J. T.
Roberts
,
Langmuir
25
,
7050
(
2009
).
10.
F.
Hua
,
M. T.
Swihart
, and
E.
Ruckenstein
,
Langmuir
21
,
6054
(
2005
);
[PubMed]
A.
Gupta
,
M. T.
Swihart
, and
H.
Wiggers
,
Adv. Funct. Mater.
19
,
696
(
2009
).
11.
X. H.
Sun
,
S. D.
Wang
,
N. B.
Wong
,
D. D. D.
Ma
, and
S. T.
Lee
,
Inorg. Chem.
42
,
2398
(
2003
).
12.
Y.
Ogata
,
H.
Niki
,
T.
Sakka
, and
M.
Iwasaki
,
J. Electrochem. Soc.
142
,
195
(
1995
).
13.
V. A.
Burrows
,
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
S. B.
Christman
,
Appl. Phys. Lett.
53
,
998
(
1988
).
14.
R.
Drosd
and
J. J.
Washburn
,
J. Appl. Phys.
53
,
397
(
1982
).
15.
A. A.
Fridman
,
L.
Boufendi
,
T.
Hbid
,
B. V.
Potapkin
, and
A.
Bouchoule
,
J. Appl. Phys.
79
,
1303
(
1996
);
Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing
, edited by
A.
Bouchoule
(
Wiley
,
Chichester, NY
,
1999
);
U. K.
Das
,
P.
Chaudhuri
, and
S. T.
Kshirsagar
,
J. Appl. Phys.
80
,
5389
(
1996
);
K.
De Bleecker
,
A.
Bogaerts
,
W.
Goedheer
, and
R.
Gijbels
,
IEEE Trans. Plasma Sci.
32
,
691
(
2004
);
U. K.
Kortshagen
,
U. V.
Bhandarkar
,
M. T.
Swihart
, and
S. L.
Girshick
,
Pure Appl. Chem.
71
,
1871
(
1999
);
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2005
), Chap. 17;
M. T.
Swihart
and
S. L.
Girshick
,
J. Phys. Chem. B
103
,
64
(
1999
).
16.
X.
Wang
,
R. Q.
Zhang
,
S. T.
Lee
,
T.
Frauenheim
, and
T. A.
Niehaus
,
Appl. Phys. Lett.
93
,
243120
(
2008
);
D. K.
Yu
,
R. Q.
Zhang
, and
S. T.
Lee
,
J. Appl. Phys.
92
,
7453
(
2002
);
L.
Pizzagalli
and
G.
Galli
,
Mater. Sci. Eng., B
96
,
86
(
2002
).
17.
See EPAPS Document No. E-JVTAD6-28-001002 for summary of plasma control parameters and ranges. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
18.
D. C.
Marra
,
W. M.
Kessels
,
M.
van de Sanden
,
K.
Kashefizadeh
, and
E. S.
Aydil
,
Surf. Sci.
530
,
1
(
2003
).
19.
M. J.
Wautelet
,
J. Phys.: Condens. Matter
16
,
L163
(
2004
);
P. L.
Silvestrelli
,
A.
Alavi
,
M.
Parrinello
, and
D.
Frenkel
,
Phys. Rev. B
56
,
3806
(
1997
).
20.
J. A.
Van Vechten
,
R.
Tsu
, and
F. W.
Saris
,
Phys. Lett.
A
74
,
422
(
1979
).
21.
Y. J.
Chabal
,
Physica B
170
,
447
(
1991
).
22.
Y. J.
Chabal
and
K.
Raghavachari
,
Phys. Rev. Lett.
53
,
282
(
1984
).
23.
M. Z.
Burrows
,
U. K.
Das
,
R. L.
Opila
,
S.
De Wolf
, and
R. W.
Birkmire
,
J. Vac. Sci. Technol. A
26
,
683
(
2008
);
Y.
Ogata
,
F.
Kato
,
T.
Tsuboi
, and
T.
Sakka
,
J. Electrochem. Soc.
145
,
2439
(
1998
).
24.
J.
Holm
and
J. T.
Roberts
,
J. Am. Chem. Soc.
129
,
2496
(
2007
).
25.
S.
Vepřek
and
F. A.
Sarott
,
Plasma Chem. Plasma Process.
2
,
233
(
1982
).
26.
Y.
He
,
C.
Yin
,
G.
Cheng
,
L.
Wang
,
X.
Liu
, and
G. Y.
Hu
,
J. Appl. Phys.
75
,
797
(
1994
).

Supplementary Material

You do not currently have access to this content.