The rarefied gas flow through circular tubes of finite length has been investigated computationally by the direct simulation Monte Carlo method. The reduced flow rate and the flow field have been calculated as functions of the gas rarefaction, the length-to-radius ratio, and the pressure ratio along the tube. The gas rarefaction, which is inversely proportional to the Knudsen number, is varied from 0 to 2000, i.e., the free-molecular, transitional, and hydrodynamic regimes are embraced. A wide range of the length-to-radius ratio, namely, from 0 corresponding to the orifice flow up to 10 representing a sufficiently long tube, has been considered. Several values of the pressure ratio between 0 and 0.7 have been regarded. This pressure range covers both gas flow into vacuum and into a background gas. It has been found that the rarefaction parameter has the most significant effect on the flowfield characteristics and patterns, followed by the pressure ratio drop, while the length-to-radius ratio has a rather modest impact. Several interesting findings have been reported including the behavior of the flow rate and other macroscopic quantities in terms of these three parameters. In addition, the effect of gas rarefaction on the choked flow and on the Mach disks at large pressure drops is discussed. Comparison of some of the present numerical results with available experimental data has shown a good agreement.

1.
M.
Knudsen
,
Ann. Phys. (N.Y.)
28
,
999
(
1909
).
2.
P.
Clausing
,
J. Vac. Sci. Technol.
8
,
636
(
1971
).
3.
R.
Hanks
and
H.
Weissberg
,
J. Appl. Phys.
35
,
142
(
1964
).
4.
A. K.
Sreekanth
,
Phys. Fluids
8
,
1951
(
1965
).
5.
B. T.
Porodnov
,
P. E.
Suetin
,
S. F.
Borisov
, and
V. D.
Akinshin
,
J. Fluid Mech.
64
,
417
(
1974
).
6.
T.
Fujimoto
and
M.
Usami
,
ASME Trans. J. Fluids Eng.
106
,
367
(
1984
).
7.
F.
Sharipov
,
J. Fluid Mech.
518
,
35
(
2004
).
8.
F.
Sharipov
and
V.
Seleznev
,
J. Phys. Chem. Ref. Data
27
,
657
(
1998
).
9.
Handbook of Vacuum Technology
, edited by
K.
Jousten
(
Wiley-VCH Verlag
,
Weinheim
,
2008
).
10.
F.
Sharipov
,
Encyclopedia of Microfluidics and Nanofluidics
,
D.
Li
(
Springer-Verlag
,
New York
,
2008
), pp.
772
778
.
11.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
12.
H.
Shinagawa
,
H.
Setyawan
,
T.
Asai
,
Y.
Sugiyama
, and
K.
Okuyama
,
Chem. Eng. Sci.
57
,
4027
(
2002
).
13.
M.
Usami
and
K.
Okuyama
,
JSME Int. J., Ser. B
42
,
369
(
1999
).
14.
G.
Koppenwallner
,
T.
Lips
, and
C.
Dankert
, in
Rarefied Gas Dynamics
, edited by
M. S.
Ivanov
and
A. K.
Rebrov
(
Siberian Branch of the Russian Academy of Science
,
Novosibirsk
,
2007
), pp.
585
591
.
15.
S. F.
Gimelshein
,
G. N.
Markelov
,
T. C.
Lilly
,
N. P.
Selden
, and
A. D.
Ketsdever
, in
Rarefied Gas Dynamics
, edited by
M.
Capitelli
(
American Institute of Physics
,
Melville, NY
,
2004
), pp.
437
443
.
16.
T.
Lilly
,
S.
Gimelshein
,
A.
Ketsdever
, and
G. N.
Markelov
,
Phys. Fluids
18
,
093601
(
2006
).
17.
S.
Varoutis
,
D.
Valougeorgis
,
O.
Sazhin
, and
F.
Sharipov
,
J. Vac. Sci. Technol. A
26
,
228
(
2008
).
18.
L.
Marino
,
Microfluid. Nanofluid.
6
,
109
(
2009
).
19.
W.
Wagner
,
J. Stat. Phys.
66
,
1011
(
1992
).
20.
W.
Jitschin
,
U.
Weber
, and
H. K.
Hartmann
,
Vacuum
46
,
821
(
1995
).
21.
B.
Maté
,
I. A.
Graur
,
T.
Elizarova
,
I.
Chirokov
,
G.
Tejeda
,
J. M.
Fernández
, and
S.
Montero
,
J. Fluid Mech.
426
,
177
(
2001
).
22.
I. A.
Graur
,
T. G.
Elizarova
,
A.
Ramos
,
G.
Tejeda
,
J. M.
Fernández
, and
S.
Montero
,
J. Fluid Mech.
504
,
239
(
2004
).
You do not currently have access to this content.